
CSc 372 — Comparative Programming Languages

34 : Ruby — Modules

Christian Collberg

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

November 17, 2011

1 Namespaces

• Modules define namespaces. This allows you to have several methods or constants with the same name.

module Duck

def Duck.speak()

return "quack"

end

end

module Goose

def Goose.speak()

return "honk"

end

end

2 Methods in Modules

• Outside of the module M, you refer to one of its methods meth as M.meth:

module Duck

def Duck.speak()

return "quack"

end

end

module Goose

def Goose.speak()

return "honk"

end

end

puts Duck.speak()

puts Goose.speak()

3 Constants in Modules

• Outside of the module M you refer to one of its constants con as M::con.

module Duck

IS_CUTE = true

end

module Goose

1

IS_CUTE = false

end

puts Duck::IS_CUTE

4 Classes in Modules

• You can define a class within a module. Since the class name is essentially a constant, you reference
the class using ::.

module Fowl

class Duck

def speak()

puts "quack!"

end

end

class Goose

def speak()

puts "honk!"

end

end

end

d = Fowl::Duck.new()

d.speak()

g = Fowl::Goose.new()

g.speak()

5 Modules in Modules

• You can even have modules inside modules!

module Birdies

module Duckie

def Duckie.speak()

puts "quack!"

end

end

module Goosie

def Goosie.speak()

puts "honk!"

end

end

end

Birdies::Duckie.speak()

Birdies::Goosie.speak()

6 Including Modules

• You can put several definitions in one file:

duckies.rb goosies.rb
module Duck

IS_CUTE = true

def Duck.speak()

return "quack"

end

end

module Goose

IS_CUTE = false

def Goose.speak()

return "honk"

end

end

2

7 Including Modules. . .

• You include the file in by saying "require ’file’" (or "load ’file’" but this will load the definitions
multiple times if you load more than once):

main.rb
require ’duckies’

require ’goosies’

puts Duck.speak()

puts Goose.speak()

puts Duck::IS_CUTE

8 Mixins

• Create a module with instance methods which may be useful in many different kinds of classes:

module Debug

def printme()

puts "#{self.class.name}" +

"(\##{self.object_id})"

end

end

9 Mixins. . .

• Include a module within a class and its instance methods automatically become available in the class:

class Ducktape

include Debug

def color()

puts "silver"

end

end

d = Ducktape.new()

d.printme()

• You’re including a reference to the module: any change to it will affect all classes in which it is included.

10 Mixing in module Comparable

• Include Comparable in your class and define your own <=> method (returning 1, -1, or 0, for greater-
than, less-than, or equal, respectively).

module Comparable

def ==(arg)

end

def >=(arg)

end

def <(arg)

end

3

...

end

11 Mixing in module Comparable. . .

class Ducktape

include Comparable

attr_reader :size

def initialize(size)

@size = size

end

def <=>(other)

if self.size > other.size then return 1

elsif other.size > self.size then return -1

else return 0

end

end

end

12 Mixing in module Comparable. . .

• Your class now gets immediate access to the methods that Comparable defines (<, <=, >, >=):

small = Ducktape.new(100)

large = Ducktape.new(200)

puts small < large

puts small > large

puts small == large

puts small <= large

puts small >= large

13 Mixing in Enumerable

• Include the Enumerable module and define an each() method.

module Enumerable

def each_with_index

end

def collect

end

def sort

def member?(arg0)

end

def inject(arg0, arg1, *rest)

end

...

end

14 Mixing in Enumerable. . .

class Flock

4

include Enumerable

def initialize(mum, dad, babies)

@mum = mum

@dad = dad

@babies = babies

end

def each()

yield @mum

yield @dad

@babies.each() {|b| yield b}

end

end

15 Mixing in Enumerable. . .

• You now get access to methods such as collect(), sort(), and inject():

f = Flock.new("daisy","donald",

["huey","dewey","louie"])

f.each() {|x| puts x}

puts f.collect {|x| x.length()}

puts f.sort()

puts f.inject() {|v,x| (v=="")?x:v+","+x}

16 Readings

• Read Chapter 9, page 117–125, in Programming Ruby — The Pragmatic Programmers Guide, by Dave
Thomas.

17 Duck Automata

. . . [French engineer Jacques] de Vaucanson [1709-82] built . . . a mechanical duck which could move in the
typical, wagging way of a duck, eat and digest fish, and excrete the remains in a “natural” way. The
mechanism was driven by a weight and had more than a thousand moving parts. . .

5

From: http://music.calarts.edu/~sroberts/articles/DeVaucanson.duck.html

6

