
CSc 372 — Comparative Programming Languages

6 : Haskell — Lists

Christian Collberg

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

August 23, 2011

1 The List Datatype

• All functional programming languages have the ConsList ADT built-in. It is called so because lists are
constructed by “consing” (adding) an element on to the beginning of the list.

• Lists are defined recursively:

1. The empty list [] is a list.

2. An element x followed by a list L (x:L), is a list.

• Examples:

[]

2:[]

3:(2:[])

4:(3:(2:[]))

2 The List Datatype. . .

• The cons operator ":" is right associative (it binds to the right, i.e.

1:2:[] ≡ 1:(2:[])

so

3:(2:[])

can be written without brackets as

3:2:[]

1

3 The List Datatype. . .

• Lists can also be written in a convenient bracket notation.

2:[] ⇒ [2]

3:(2:[]) ⇒ [3,2]

4:(3:(2:[]) ⇒ [4,3,2]

• You can make lists-of-lists ([[1],[5]]), lists-of-lists-of-lists ([[[1,2]],[[3]]]), etc.

4 The List Datatype. . .

• More cons examples:

1:[2,3] ⇒ [1,2,3]

[1]:[[2],[3]] ⇒ [[1],[2],[3]]

• Note that the elements of a list must be of the same type!

[1,[1],1] ⇒ Illegal!

[[1],[2],[[3]]]⇒ Illegal!

[1,True] ⇒ Illegal!

5 Internal Representation

• Internally, Haskell lists are represented as linked cons-cells.

• A cons-cell is like a C struct with two pointer fields head and tail.

• The head field points to the first element of the list, the tail field to the rest of the list.

• The :-operator creates a new cons-cell (using malloc) and fills in the head and tail fields to point to
the first element of the new list, and the rest of the list, respectively.

6 Internal Representation — Example

[]3

1 : [2,3]

[]

[2,3] 1:2:3:[] [1,2,3]

TailHead

2

3

1

2

2:3:[] oror

2

7

Standard Operations on Lists

8 head and tail

• The Standard Prelude has many built-in operations on lists.

• Two principal operators are used to take lists apart:

1. head L – returns the first element of L.

2. tail L – returns L without the first element.

• The cons operator ":" is closely related to head and tail:

1. head (x:xs) ≡ x

2. tail (x:xs) ≡ xs

• The cons operator ":" constructs new lists, head and tail take them apart.

9 head and tail. . .

head [1,2,3] ⇒ 1

tail [1,2,3] ⇒ [2,3]

tail [1] ⇒ [] ([1] == 1:[])

head [] ⇒ ERROR

tail [] ⇒ ERROR

head (1:[2,3]) ⇒ 1

tail (1:[2,3]) ⇒ [2,3]

head (tail [1,2,3])⇒ 2

head (tail [[1],[2],[3,3]])⇒ [2]

10 length and ++

• length xs – Number of elements in the list xs.

• xs ++ ys – The elements of xs followed by the elements of ys.

Examples:

length [1,2,3] ⇒ 3

length [] ⇒ 0

[1,2] ++ [3,4] ⇒ [1,2,3,4]

[1,2] ++ [] ⇒ [1,2]

[1] ++ [2,3] ++ [4] ⇒ [1,2,3,4]

length ([1]++[2,3]) ⇒ 3

[1] ++ [length [2,3]]⇒ [1,2]

3

11 concat

• concat xss – all of the lists in xss appended together.

concat [[1],[4,5],[6]] ⇒ [1,4,5,6]

• Note that concat takes a list of lists as argument.

12 map

• map f xs – list of values obtained by applying the function f to the values in xs.

map even [1,2,3] ⇒ [False,True,False]

map square [1,2,3] ⇒ [1,4,9]

• Note that map takes a function as its first argument. A function which takes a function as an argument
or delivers one as its result, is called a higher-order function.

• We will talk more about higher-order functions in future lectures.

13 More list operation examples

head ([1,2] ++ [3,4]) ⇒

head [1,2,3,4] ⇒ 1

tail (concat [[1],[3,4],[5]]) ⇒

tail [1,3,4,5] ⇒ [3,4,5]

tail (map double (concat [[1],[3],[4]])) ⇒

tail (map double [1,3,4]) ⇒

tail [2,6,8] ⇒ [6,8]

14 The String Type

• A Haskell string is a list of characters:

type String = [Char]

• All list manipulation functions can be applied to strings.

• Note that "" == [].

"Chris" ⇔ [’C’,’h’,’r’,’i’,’s’]

head "Chris" ⇔ ’C’

tail "Chris" ⇔ [’h’,’r’,’i’,’s’]

"Chris" ++ "tian" ⇔

[’C’,’h’,’r’,’i’,’s’,’t’,’i’,’a’,’n’]

map ord "Hello" ⇔

[72,101,108,108,111]

concat ["Have ","a ","cow, ","man!"]

⇔ "Have a cow, man!"

4

15

Recursion Over Lists

16 Recursion on the Tail

• Compute the length of a list.

• This is called recursion on the tail.

len :: [Int] -> Int

len xs = if xs == [] then

0

else

1 + len (tail xs)

17 Variable Naming Conventions

• When we write functions over lists it’s convenient to use a consistent variable naming convention. We
let

– x, y, z, · · · denote list elements.

– xs, ys, zs, · · · denote lists of elements.

– xss, yss, zss, · · · denote lists of lists of elements.

18 Map Function

• Map a list of numbers to a new list of their absolute values.

• In the previous examples we returned an Int — here we’re mapping a list to a new list.

• This is called a map function.

abslist :: [Int] -> [Int]

abslist xs = if xs == [] then

[]

else

abs (head xs) : abslist (tail xs)

19 Map Function. . .

> abslist []

[]

> abslist [1]

[1]

abslist [1,-2]

[1,2]

5

20 Recursion Over Two Lists

• listeq xs ys returns True if two lists are equal.

listeq :: [Int] -> [Int] -> Bool

listeq xs ys = if xs==[] && ys==[] then

True

else if xs==[] || ys==[] then

False

else if head xs /= head ys then

False

else

listeq (tail xs) (tail ys)

21 Recursion Over Two Lists. . .

> listeq [1] [2]

False

> listeq [1] [1]

True

> listeq [1] [1,2]

False

> listeq [1,2] [1,2]

True

22 Append

• append xs ys takes two lists as arguments and returns a new list, consisting of the elements of xs
followed by the elements of ys.

• To do this recursively, we take xs apart on the way down into the recursion, and “attach” them to ys

on the way up:

append :: [Int] -> [Int] -> [Int]

append xs ys = if xs==[] then

ys

else

(head xs) : (append (tail xs) ys)

23 Append. . .

> append [] []

[]

> append [1] []

[1]

> append [1] [2]

[1,2]

> append [1,2,3] [4,5,6]

[1,2,3,4,5,6]

6

24

Arithmetic Sequences

25 Arithmetic Sequences

• Haskell provides a convenient notation for lists of numbers where the difference between consecutive
numbers is constant.

[1..3] ⇒ [1,2,3]

[5..1] ⇒ []

• A similar notation is used when the difference between consecutive elements is 6= 1: Examples:

[1,3..9] ⇒ [1,3,5,7,9]

[9,8..5] ⇒ [9,8,7,6,5]

[9,8..11] ⇒ []

Or, in general:

[m,k..n] ⇒

[m,m+(k-m)*1,m+(k-m)*2,· · ·,n]

26 Arithmetic Sequences. . .

• Or, in English

“m and k are the first two elements of the sequence. All consecutive pairs of elements have
the same difference as m and k. No element is greater than n.”

• Or, in some other words,

“m and k form a prototype for consecutive element pairs in the list.”

• Later in the course we will talk about infinite lists. Haskell has the capability to create infinite
arithmetic sequences:

[3..] ⇒ [3,4,5,6,7,· · ·]

[4,3..] ⇒ [4,3,2,1,0,-1,-2,· · ·]

27 Summary

• The bracketed list notation [1,2,3] is just an abbreviation for the list constructor notation 1:2:3:[].

• Lists can contain anything: integers, characters, tuples, other lists, but every list must contain elements
of the same type only.

• :, ++, concat, and list comprehensions create lists.

• head and tail take lists apart.

7

28 Summary. . .

• The notation [m..n] generates lists of integers from m to n.

• If the difference between consecutive integers is 6= 1, we use the slightly different notation [m,k..n].
The first two elements of the generated list are m and k. The remaining elements are as far apart as m
and k.

29 Homework

• Which of the following are legal list constructions? First work out the answer in your head, then try
it out with the hugs interpreter.

1. 1 : []

2. 1 : [] : []

3. 1 : [1]

4. [] : [1]

5. [1] : [1] : []

30 Homework

• Show the lists generated by the following Haskell list expressions.

1. [7..11]

2. [11..7]

3. [3,6..12]

4. [12,9..2]

31 Homework

1. Write a function getelmt xs n which returns the n:th element of a list of integers.

2. Write a function evenelmts xs which returns a new list consisting of the 0:th, 2:nd, 4:th, . . . elements
of an integer list xs.

32 Homework

• For each of the function signatures on the next slide, describe in words what type of function they
represent. For example, for f1 you’d say “this is a function which takes one Int argument and returns
and Int result.”

• Also, for each signature, give an example of a function that would have this signature. For example,
“f1 could be the abs function which takes an Int as argument and returns its absolute value.”

8

33 Homework. . .

1. f1 :: Int -> Int

2. f2 :: Int -> Bool

3. f3 :: (Int,Int)->Int

4. f4 :: [Int] -> Int

5. f5 :: [Int] -> Bool

6. f6 :: [Int]->Int->Bool

7. f7 :: [Int]->[Int]->[Int]

8. f8 :: [[Int]]->[Int]

9. f9 :: [Int]->[Int]

10. f10 :: [Int]->[Bool]

9

