
CSc 372 — Comparative Programming Languages

7 : Haskell — Patterns

Christian Collberg

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

August 23, 2011

1 Pattern Matching

• Haskell has a notation (called patterns) for defining functions that is more convenient than conditional
(if-then-else) expressions.

• Patterns are particularly useful when the function has more than two cases.

Pattern Syntax:

function name pattern 1 = expression 1

function name pattern 2 = expression 2

· · ·

function name pattern n = expression n

2 Pattern Matching. . .

fact n = if n == 0 then

1

else

n * fact (n-1)

fact Revisited:

fact :: Int -> Int

fact 0 = 1

fact n = n * fact (n-1)

3 Pattern Matching. . .

• Pattern matching allows us to have alternative definitions for a function, depending on the format of
the actual parameter. Example:

isNice "Jenny" = "Definitely"

isNice "Johanna" = "Maybe"

isNice "Chris" = "No Way"

1



4 Pattern Matching. . .

• We can use pattern matching as a design aid to help us make sure that we’re considering all possible
inputs.

• Pattern matching simplifies taking structured function arguments apart. Example:

fun (x:xs) = x ⊕ fun xs

⇔

fun xs = head xs ⊕ fun (tail xs)

5 Pattern Matching. . .

• When a function f is applied to an argument, Haskell looks at each definition of f until the argument
matches one of the patterns.

not True = False

not False = True

6 Pattern Matching. . .

• In most cases a function definition will consist of a number of mutually exclusive patterns, followed by
a default (or catch-all) pattern:

diary "Monday" = "Woke up"

diary "Sunday" = "Slept in"

diary anyday = "Did something else"

diary "Sunday" ⇒ "Slept in"

diary "Tuesday" ⇒ "Did something else"

7 Pattern Matching – Integer Patterns

• There are several kinds of integer patterns that can be used in a function definition.

Pattern Syntax Example Description
variable var name fact n = · · · n matches any argu-

ment
constant literal fact 0 = · · · matches the value
wildcard five = 5 matches any argu-

ment
(n+k) pat. (n+k) fact (n+1) = · · · (n+k) matches any in-

teger ≥ k

8 Pattern Matching – List Patterns

• There are also special patterns for matching and (taking apart) lists.

2



Pattern Syntax Example Description
cons (x:xs) len (x:xs) = · · · matches non-empty list
empty [ ] len [ ] = 0 matches the empty list
one-elem [x] len [x] = 1 matches a list with exactly 1

element.
two-elem [x,y] len [x,y] = 2 matches a list with exactly 2

elements.

9 The sumlist Function

Using conditional expr:

sumlist :: [Int] -> Int

sumlist xs = if xs == [ ] then 0

else head xs + sumlist(tail xs)

Using patterns:

sumlist :: [Int] -> Int

sumlist [ ] = 0

sumlist (x:xs) = x + sumlist xs

• Note that patterns are checked top-down! The ordering of patterns is therefore important.

10 The length Function Revisited

Using conditional expr:

len :: [Int] -> Int

len s = if s == [ ] then 0 else 1 + len (tail s)

Using patterns:

len :: [Int] -> Int

len [ ] = 0

len ( :xs) = 1 + len xs

• Note how similar len and sumlist are. Many recursive functions on lists will have this structure.

11 The fact Function Revisited

Using conditional expr:

fact n = if n == 0 then 1 else n * fact (n-1)

Using patterns:

fact’ :: Int -> Int

fact’ 0 = 1

fact’ (n+1) = (n+1) * fact’ n

• Are fact and fact’ identical?

fact (-1) ⇒ Stack overflow

fact’ (-1) ⇒ Program Error

• The second pattern in fact’ only matches positive integers (≥ 1).

3



12 Summary

• Functional languages use recursion rather than iteration to express repetition.

• We have seen two ways of defining a recursive function: using conditional expressions (if-then-else)
or pattern matching.

• A pattern can be used to take lists apart without having to explicitly invoke head and tail.

• Patterns are checked from top to bottom. They should therefore be ordered from specific (at the top)
to general (at the bottom).

13 Homework

• Define a recursive function addints that returns the sum of the integers from 1 up to a given upper
limit.

• Simulate the execution of addints 4.

addints :: Int -> Int

addints a = · · ·

? addints 5

15

? addints 2

3

14 Homework

• Define a recursive function member that takes two arguments – an integer x and a list of integers L –
and returns True if x is an element in L.

• Simulate the execution of member 3 [1,4,3,2].

member :: Int -> [Int] -> Bool

member x xs = · · ·

? member 1 [1,2,3]

True

? member 4 [1,2,3]

False

15 Homework

• Write a recursive function memberNum x xs which returns the number of times x occurs in xs.

• Use memberNum to write a function unique xs which returns a list of elements from xs that occurs
exactly once.

4



memberNum :: Int -> [Int] -> Int

unique :: [Int] -> [Int]

? memberNum 5 [1,5,2,3,5,5]

3

? unique [2,4,2,1,4]

[1]

16 Homework

• Ackerman’s function is defined for nonnegative integers:

A(0, n) = n + 1
A(m, 0) = A(m − 1, 1)
A(m, n) = A(m − 1, A(m, n − 1))

• Use pattern matching to implement Ackerman’s function.

• Flag all illegal inputs using the built-in function error S which terminates the program and prints the
string S.

ackerman :: Int -> Int -> Int

ackerman 0 5 ⇒ 6

ackerman (-1) 5 ⇒ ERROR

5


