
CSc 372

Comparative Programming Languages

10 : Haskell — Curried Functions

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Christian Collberg

collberg@gmail.com


Infix Functions



Declaring Infix Functions

Sometimes it is more natural to use an infix notation for a
function application, rather than the normal prefix one:

5 + 6 (infix)
(+) 5 6 (prefix)

Haskell predeclares some infix operators in the standard
prelude, such as those for arithmetic.

For each operator we need to specify its precedence and
associativity. The higher precedence of an operator, the
stronger it binds (attracts) its arguments: hence:

3 + 5*4 ≡ 3 + (5*4)

3 + 5*4 6≡ (3 + 5) * 4



Declaring Infix Functions. . .

The associativity of an operator describes how it binds when
combined with operators of equal precedence. So, is

5-3+9 ≡ (5-3)+9 = 11

OR

5-3+9 ≡ 5-(3+9) = -7

The answer is that + and - associate to the left, i.e.
parentheses are inserted from the left.

Some operators are right associative: 5^3^2 ≡ 5^(3^2)

Some operators have free (or no) associativity. Combining
operators with free associativity is an error:

5 == 4 < 3 ⇒ ERROR



Declaring Infix Functions. . .

The syntax for declaring operators:

infixr prec oper -- right assoc.

infixl prec oper -- left assoc.

infix prec oper -- free assoc.

From the standard prelude:

infixl 7 *

infix 7 /, ‘div‘, ‘rem‘, ‘mod‘

infix 4 ==, /=, <, <=, >=, >

An infix function can be used in a prefix function application,
by including it in parenthesis. Example:

? (+) 5 ((*) 6 4)

29



Multi-Argument Functions



Multi-Argument Functions

Haskell only supports one-argument functions.

An n-argument function f (a1, · · · , an) is constructed in either
of two ways:

1 By making the one input argument to f a tuple holding the n

arguments.
2 By letting f “consume” one argument at a time. This is called

currying .

Tuple Currying

add :: (Int,Int)->Int

add (a, b) = a + b

add :: Int->Int->Int

add a b = a + b



Currying

Currying is the preferred way of constructing multi-argument
functions.

The main advantage of currying is that it allows us to define
specialized versions of an existing function.

A function is specialized by supplying values for one or more
(but not all) of its arguments.

Let’s look at Haskell’s plus operator (+). It has the type

(+) :: Int -> (Int -> Int).

If we give two arguments to (+) it will return an Int:

(+) 5 3 ⇒ 8



Currying. . .

If we just give one argument (5) to (+) it will instead return a
function which “adds 5 to things”. The type of this
specialized version of (+) is Int -> Int.

Internally, Haskell constructs an intermediate – specialized –
function:

add5 :: Int -> Int

add5 a = 5 + a

Hence, (+) 5 3 is evaluated in two steps. First (+) 5 is
evaluated. It returns a function which
adds 5 to its argument . We apply the second argument 3 to
this new function, and the result 8 is returned.



Currying. . .

To summarize, Haskell only supports one-argument functions.
Multi-argument functions are constructed by successive
application of arguments, one at a time.

Currying is named after logician Haskell B. Curry (1900-1982)
who popularized it. It was invented by Schönfinkel in 1924.
Schönfinkeling doesn’t sound too good...

Note: Function application (f x) has higher precedence (10)
than any other operator. Example:

f 5 + 1 ⇔ (f 5) + 1

f 5 6 ⇔ (f 5) 6



Currying Example

Let’s see what happens when we evaluate f 3 4 5, where f is
a 3-argument function that returns the sum of its arguments.

f :: Int -> (Int -> (Int -> Int))

f x y z = x + y + z

f 3 4 5 ≡ ((f 3) 4) 5



Currying Example. . .

(f 3) returns a function f’ y z (f’ is a specialization of f)
that adds 3 to its next two arguments.

f 3 4 5 ≡ ((f 3) 4) 5 ⇒ (f’ 4) 5

f’ :: Int -> (Int -> Int)

f’ y z = 3 + y + z



Currying Example. . .

(f’ 4) (≡ (f 3) 4) returns a function f’’z (f’’ is a
specialization of f’) that adds (3+4) to its argument.

f 3 4 5 ≡ ((f 3) 4) 5 ⇒ (f’ 4) 5

⇒ f’’ 5

f’’ :: Int -> Int

f’’ z = 3 + 4 + z

Finally, we can apply f’’ to the last argument (5) and get the
result:

f 3 4 5 ≡ ((f 3) 4) 5 ⇒ (f’ 4) 5

⇒ f’’ 5 ⇒ 3+4+5 ⇒ 12



Currying Example

The Combinatorial Function:

The combinatorial function
(

n

r

)

“n choose r”, computes the
number of ways to pick r objects from n.

(

n

r

)

=
n!

r ! ∗ (n − r)!

In Haskell:

comb :: Int -> Int -> Int

comb n r = fact n/(fact r*fact(n-r))

? comb 5 3

10



Currying Example. . .

comb :: Int -> Int -> Int

comb n r = fact n/(fact r*fact(n-r))

comb 5 3 ⇒ (comb 5) 3 ⇒
comb5 3 ⇒
120 / (fact 3 * (fact 5-3)) ⇒
120 / (6 * (fact 5-3)) ⇒
120 / (6 * fact 2) ⇒
120 / (6 * 2) ⇒
120 / 12 ⇒
10

comb5 r = 120 / (fact r * fact(5-r))

comb5 is the result of partially applying comb to its first
argument.



Associativity

Function application is left -associative:
f a b = (f a) b f a b 6= f (a b)

The function space symbol ‘->’ is right -associative:

a -> b -> c = a -> (b -> c)

a -> b -> c 6= (a -> b) -> c

f takes an Int as argument and returns a function of type
Int -> Int. g takes a function of type Int -> Int as
argument and returns an Int:

f’ :: Int -> (Int -> Int)

m
f :: Int -> Int -> Int

6m
g :: (Int -> Int) -> Int



What’s the Type, Mr. Wolf?

If the type of a function f is

t1 -> t2 -> · · · -> tn -> t

and f is applied to arguments

e1::t1, e2::t2, · · · , ek::tk,

and k ≤ n

then the result type is given by cancelling the types t1 · · · tk :

6 t1 -> 6 t2 -> · · · -> 6 tk -> tk+1 -> · · · -> tn -> t

Hence, f e1 e2 · · · ek returns an object of type

tk+1 -> · · · -> tn -> t.

This is called the Rule of Cancellation .



flip

flip :: (a -> b -> c) -> b -> a -> c

flip f x y = f y x

The flip function takes a function f x y (f is the function
and x and y its two arguments, and reorders the arguments!

Or, more correctly, flip returns a new function f y x.

You can use this when you want to specialize a function by
supplying an argument, but the function takes its arguments
in the “wrong order.”



flip. . .

Consider the (!!) function, for example:

> :type (!!)

(!!) :: [a] -> Int -> a

> :type flip(!!)

flip (!!) :: Int -> [a] -> a

> (!!) [1..10] 2

3

> (flip (!!)) 2 [1..10]

3

Now you can write a function fifth using (!!) which
returns the fifth element of a list:

fifth :: [a] -> a

fifth = (flip (!!)) 5



Homework

Define an operator $$ so that x $$ xs returns True if x is an
element in xs, and False otherwise.

Example:

? 4 $$ [1,2,5,6,4,7]

True

? 4 $$ [1,2,3,5]

False

? 4 $$ []

False



Homework

Define an function drop3 which takes a list as argument and
returns a new list with the first three elements removed.

Use currying!



Homework

> :type elem

elem :: Eq a => a -> [a] -> Bool

> elem 3 [1..10]

The elem function returns true if the first argument is a
member of the second (a list).

Write a function has3 xs which returns true if xs (a list)
contains the number 3.

Write a function isSmallPrime x which returns true if x is
one of the numbers 2,3,5,7.

Use currying!

> isSmallPrime 2

True

> has3 [1]

False


