CSc 372

Comparative Programming Languages

12 : Haskell — Composing Functions

Department of Computer Science
University of Arizona

Copyright (© 2011 Christian Collberg

collberg@gmail.com

Composing Functions

We want to discover frequently occurring patterns of computation.
These patterns are then made into (often higher-order) functions
which can be specialized and combined. map f L and filter f
L can be specialized and combined:

double :: [Int] -> [Int]
double xs = map ((*) 2) xs

positive :: [Int] -> [Int]
positive xs = filter ((<) 0) xs

doublePos xs = map ((*x) 2) (filter ((<) 0) xs)
? doublePos [2,3,0,-1,5]
[4, 6, 10]

Composing Functions. . .

@ Functional composition is a kind of “glue” that is used to
“stick” simple functions together to make more powerful ones.

@ In mathematics the ring symbol (o) is used to compose
functions:

(fog)lx) = fg(x))

@ In Haskell we use the dot (".") symbol:

infixr 9 .
(.) :: (b->c) -> (a->b) -> (a->c)
f . g = f(gx))

Composing Functions. . .

(.) :: (b->c) -> (a->b) -> (a->c)
f . gk =1f(gx))

f.g
a |a b c|cC
@ "." takes two functions £ and g as arguments, and returns a

new function h as result.
@ g is a function of type a->b.
@ f is a function of type b->c.
@ h is a function of type a->c.

@ (f.g) (x) is the same as z=g(x) followed by f(z).

Composing Functions. . .

@ We use functional composition to write functions more
concisely. These definitions are equivalent:

doit x = f1 (f2 (£f3 (f4 x)))
doit x = (f1 . f2 . f3 . f4) x
doit = f1 . £f£f2 . £33 . f4

@ The last form of doit is preferred. doit’'s arguments are
implicit; it has the same parameters as the composition.

@ doit can be used in higher-order functions (the second form
is preferred):

map (doit) xs
? map (f1 . f2 . £3 . £f4) xs

Example: Splitting Lines

@ Assume that we have a function £ill that splits a string into
filled lines:

fill :: string -> [string]
fill s = splitLines (splitWords s)

@ fill first splits the string into words (using splitWords) and
then into lines:

splitWords :: string -> [word]
splitLines :: [word] -> [line]

@ We can rewrite £ill using function composition:

fill = splitlLines . splitWords

Precedence & Associativity

@ "." isright associative. l.e.
f.g.h.i.j=£f.(g.(h.(1.3)))
@ "." has higher precedence (binding power) than any other

operator, except function application:
5+ f.g6=5+ (f. (g 6))
© "." is associative:
f. (g. h)=(«(. g . h
Q "id" is "."'s identity element,i.eid . f = f = f . id:
id :: a -> a
id x = X

The count Function

@ Define a function count which counts the number of lists of
length nin a list L:

count 2 [[1],[],[2,3],[4,5],[]1] = 2

Using recursion:

count :: Int -> [[al] -> Int
count _ [] =0
count n (x:xs)
| length x == = 1 + count n xs

| otherwise count n xs

Using functional composition:

count’ n = length . filter (==n) . map length

The count Function. ..

count’ n = length . filter (==n) . map length

@ What does count’ do?

[[11.0.[2,3].[4,3].[]]

¢ map length
[1,0,2,2,0]
filter (==2)
[2,2]
¢ length
2

@ Note that
count’ n xs = length (filter (==n) (map length xs))

The init & last Functions

@ last returns the last element of a list.

@ init returns everything but the last element of a list.

Definitions:

last head . reverse

init = reverse . tail . reverse

Simulations:
head

reverse

[1,2,3] [3,2,1] =

reverse tail reverse

[1,2,3] [3,2,1] = [2,1] [1,2]

The any Function

@ any p xs returns True if p x == True for some x in xs:

any ((==)0) [1,2,3,0,5] = True
any ((==)0) [1,2,3,4] = False

Using recursion:

any :: (a -> Bool) -> [a] -> Bool
any _ [] = False
any p (x:xs) = | p x = True

| otherwise = any p xs

Using composition:

any p = or . map p

map ££;=)O)

[1,0,3] [False,True,False]éﬁ;True

commaint Revisited. ..

@ Let's have another look at one simple (!) function, commaint.

@ commaint works on strings, which are simply lists of
characters.

@ You are ot now supposed to understand this!

From the commaint documentation:

[commaint] takes a single string argument containing a
sequence of digits, and outputs the same sequence with
commas inserted after every group of three digits, - - -

commaint Revisited. ..

Sample interaction:

? commaint "1234567"

1,234,567
commaint in Haskell:
commaint = reverse . foldrl (\x y->x++","++y)
group 3 . reverse

where group n = takeWhile (not.null)
map (take n).iterate (drop n)

commaint Revisited. ..

"1234567"
+ reverse
"7654321"
l iterate (drop 3) ?
['7654321","4321","1""" """, ..] o
¢ map (take 3) u
p
["765","432","1","""",...]
takeWhile (not.null) 3

['765", "432", "1"]

¢ foldrl (\X y—>x++","++y)
"765,432,1"
+ reverse

"1,234,567"

commaint Revisited. ..

commaint = reverse . foldrl (\x y->x++","++y)
group 3 . reverse
where group n = takeWhile (not.null)
map (take n).iterate (drop n)

@ iterate (drop 3) s returns the infinite list of strings

[s, drop 3 s, drop 3 (drop 3 s),
drop 3 (drop 3 (drop 3 s)), ---]

@ map (take n) xss shortens the lists in xss to n elements.

commaint Revisited. ..

commaint = reverse . foldrl (\x y->x++","++y)
group 3 . reverse
where group n = takeWhile (not.null)
map (take n).iterate (drop n)

@ takeWhile (not.null) removes all empty strings from a list
of strings.

@ foldrl (\x y->x++","++y) s takes a list of strings s as

input. It appends the strings together, inserting a comma in
between each pair of strings.

Lambda Expressions

@ (\x y->x++", "++y) is called a lambda expression.

@ Lambda expressions are simply a way of writing (short)
functions inline. Syntax:

\ arguments -> expression

@ Thus, commaint could just as well have been written as

commaint = --- . foldrl insert
where group n = ---
insert x y = x++","++y

Examples:

squareAll xs = map (\ x -> x * x) XS
length = foldl’ (\n _ -> n+1) O

Summary

@ The built-in operator "." (pronounced “compose”) takes two
functions £ and g as argument, and returns a new function h
as result.

@ The new functionh = £ . g combines the behavior of £

and g: applying h to an argument a is the same as first
applying g to a, and then applying £ to this result.

@ Operators can, of course, also be composed: ((+2)
(*3)) 3will return2 + (3 *x 3) = 11.

Homework

@ Write a function mid xs which returns the list xs without its
first and last element.

€ use recursion
@ use init, tail, and functional composition.
© use reverse, tail, and functional composition.

mid [1,2,3,4,5] = [2,3,4]
mid [] = ERROR
mid [1] = ERROR
mid [1,3] = []

N R A Y

