
CSc 372

Comparative Programming Languages

12 : Haskell — Composing Functions

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Christian Collberg

collberg@gmail.com


Composing Functions

We want to discover frequently occurring patterns of computation.
These patterns are then made into (often higher-order) functions
which can be specialized and combined. map f L and filter f

L can be specialized and combined:

double :: [Int] -> [Int]

double xs = map ((*) 2) xs

positive :: [Int] -> [Int]

positive xs = filter ((<) 0) xs

doublePos xs = map ((*) 2) (filter ((<) 0) xs)

? doublePos [2,3,0,-1,5]

[4, 6, 10]



Composing Functions. . .

Functional composition is a kind of “glue” that is used to
“stick” simple functions together to make more powerful ones.

In mathematics the ring symbol (◦) is used to compose
functions:

(f ◦ g)(x) = f (g(x))

In Haskell we use the dot (".") symbol:

infixr 9 .

(.) :: (b->c) -> (a->b) -> (a->c)

(f . g)(x) = f(g(x))



Composing Functions. . .

(.) :: (b->c) -> (a->b) -> (a->c)

(f . g)(x) = f(g(x))

b
g f

f . g

a a cc

"." takes two functions f and g as arguments, and returns a
new function h as result.

g is a function of type a->b.

f is a function of type b->c.

h is a function of type a->c.

(f.g)(x) is the same as z=g(x) followed by f(z).



Composing Functions. . .

We use functional composition to write functions more
concisely. These definitions are equivalent:

doit x = f1 (f2 (f3 (f4 x)))

doit x = (f1 . f2 . f3 . f4) x

doit = f1 . f2 . f3 . f4

The last form of doit is preferred. doit’s arguments are
implicit; it has the same parameters as the composition.

doit can be used in higher-order functions (the second form
is preferred):

? map (doit) xs

? map (f1 . f2 . f3 . f4) xs



Example: Splitting Lines

Assume that we have a function fill that splits a string into
filled lines:

fill :: string -> [string]

fill s = splitLines (splitWords s)

fill first splits the string into words (using splitWords) and
then into lines:

splitWords :: string -> [word]

splitLines :: [word] -> [line]

We can rewrite fill using function composition:

fill = splitLines . splitWords



Precedence & Associativity

1 "." is right associative. I.e.

f.g.h.i.j = f.(g.(h.(i.j)))

2 "." has higher precedence (binding power) than any other
operator, except function application:

5 + f.g 6 = 5 + (f. (g 6))

3 "." is associative:

f . (g . h) = (f . g) . h

4 "id" is "."’s identity element, i.e id . f = f = f . id:

id :: a -> a

id x = x



The count Function

Define a function count which counts the number of lists of
length n in a list L:

count 2 [[1],[],[2,3],[4,5],[]] ⇒ 2

Using recursion:

count :: Int -> [[a]] -> Int

count [] = 0

count n (x:xs)

| length x == n = 1 + count n xs

| otherwise = count n xs

Using functional composition:

count’ n = length . filter (==n) . map length



The count Function. . .

count’ n = length . filter (==n) . map length

What does count’ do?

2

[1,0,2,2,0]

filter (==2)

length
[2,2]

map length

[[1],[],[2,3],[4,5],[]]

Note that

count’ n xs = length (filter (==n) (map length xs))



The init & last Functions

last returns the last element of a list.

init returns everything but the last element of a list.

Definitions:

last = head . reverse

init = reverse . tail . reverse

Simulations:

[1,2,3]
reverse

=⇒ [3,2,1]
head
=⇒ 3

[1,2,3]
reverse

=⇒ [3,2,1]
tail
=⇒ [2,1]

reverse
=⇒ [1,2]



The any Function

any p xs returns True if p x == True for some x in xs:

any ((==)0) [1,2,3,0,5] ⇒ True

any ((==)0) [1,2,3,4] ⇒ False

Using recursion:

any :: (a -> Bool) -> [a] -> Bool

any [] = False

any p (x:xs) = | p x = True

| otherwise = any p xs

Using composition:

any p = or . map p

[1,0,3]
map ((==)0)

=⇒ [False,True,False]
or
=⇒True



commaint Revisited. . .

Let’s have another look at one simple (!) function, commaint.

commaint works on strings, which are simply lists of
characters.

You are not\\\ now supposed to understand this!

From the commaint documentation:

[commaint] takes a single string argument containing a
sequence of digits, and outputs the same sequence with
commas inserted after every group of three digits, · · ·



commaint Revisited. . .

Sample interaction:

? commaint "1234567"

1,234,567

commaint in Haskell:

commaint = reverse . foldr1 (\x y->x++","++y) .

group 3 . reverse

where group n = takeWhile (not.null) .

map (take n).iterate (drop n)



commaint Revisited. . .

reverse

r

o

u

p

3

iterate (drop 3)

map (take 3)

foldr1 (\x y−>x++","++y)

"765,432,1"

["765", "432", "1"]

takeWhile (not.null)

"7654321"

["7654321","4321","1","","", ...]

["765","432","1","","",...]

"1,234,567"

"1234567"
reverse

g



commaint Revisited. . .

commaint = reverse . foldr1 (\x y->x++","++y) .

group 3 . reverse

where group n = takeWhile (not.null) .

map (take n).iterate (drop n)

iterate (drop 3) s returns the infinite list of strings

[s, drop 3 s, drop 3 (drop 3 s),

drop 3 (drop 3 (drop 3 s)), · · · ]

map (take n) xss shortens the lists in xss to n elements.



commaint Revisited. . .

commaint = reverse . foldr1 (\x y->x++","++y) .

group 3 . reverse

where group n = takeWhile (not.null) .

map (take n).iterate (drop n)

takeWhile (not.null) removes all empty strings from a list
of strings.

foldr1 (\x y->x++","++y) s takes a list of strings s as
input. It appends the strings together, inserting a comma in
between each pair of strings.



Lambda Expressions

(\x y->x++","++y) is called a lambda expression.

Lambda expressions are simply a way of writing (short)
functions inline. Syntax:

\ arguments -> expression

Thus, commaint could just as well have been written as

commaint = · · · . foldr1 insert . · · ·
where group n = · · ·

insert x y = x++","++y

Examples:

squareAll xs = map (\ x -> x * x) xs

length = foldl’ (\n -> n+1) 0



Summary

The built-in operator "." (pronounced “compose”) takes two
functions f and g as argument, and returns a new function h

as result.

The new function h = f . g combines the behavior of f
and g: applying h to an argument a is the same as first
applying g to a, and then applying f to this result.

Operators can, of course, also be composed: ((+2) .

(*3)) 3 will return 2 + (3 * 3) = 11.



Homework

Write a function mid xs which returns the list xs without its
first and last element.

1 use recursion
2 use init, tail, and functional composition.
3 use reverse, tail, and functional composition.

? mid [1,2,3,4,5] ⇒ [2,3,4]

? mid [] ⇒ ERROR

? mid [1] ⇒ ERROR

? mid [1,3] ⇒ []


