
CSc 372

Comparative Programming Languages

14 : Haskell — Data Types

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Christian Collberg

collberg@gmail.com

User-defined Datatypes

Haskell lets us create new datatypes:

data Datatype a1 . . . an = constr1 | . . . | constrm

where

1 Datatype is the name of a new type constructor
2 a1, . . . , an are type variables representing the arguments of

Datatype

3 constr1, . . . , constrm are the different ways in which we can

create new elements of the new datatype.

Each constr is of the form

Name type1 . . . type
r

where Name is a new name beginning with a capital letter.

Like Enumerations!

The following definition introduces a new type Day with

elements Sun, Mon, Tue,. . . :

data Day = Sun|Mon|Tue|Wed|Thu|Fri|Sat

Simple functions manipulating elements of type Day can be

defined using pattern matching:

what_shall_I_do Sun = "relax"

what_shall_I_do Sat = "go shopping"

what_shall_I_do _ = "go to work"

Like Enumerations — with arguments!

We can represent temperatures either using centigrade or

fahrenheit:

data Temp = Centigrade Float |

Fahrenheit Float

deriving Show

freezing :: Temp -> Bool

freezing (Centigrade temp) = temp <= 0.0

freezing (Fahrenheit temp) = temp <= 32.0

We add the syntax deriving Show so that we can print out

elements of the datatype:

> Centigrade 66

Centigrade 66.0

Recursive Datatypes

We can define recursive datatypes.

In fact, we can use datatypes to define our own kind of lists!

Here’s a list of integers:

data IntList =

IntCons Int IntList |

IntNil

deriving Show

As usual, a list is either Nil or a Cons cell consisting of an

integer and the rest of the list.

Here’s the list [5,6] in our new representation:

IntCons 5 (IntCons 6 IntNil)

Polymorphic Recursive Datatypes

Here’s a recursive definition of a polymorphic list:

data List a =

Cons a (List a) |

Nil deriving Show

We can define our own versions of head and tail:

hd Nil = error "Head of Nil"

hd (Cons a _) = a

tl Nil = error "Tail of Nil"

tl (Cons _ b) = b

And we can construct lists of arbitrary types and take them

apart:

> hd (tl (Cons 1 (Cons 2 Nil)))

2

> hd (tl (Cons "hello" (Cons "bye" Nil)))

"bye"

Polymorphic Binary Tree

Here’s the definition of a binary tree with data in each leaf

and internal node:

data Tree a = Leaf a |

Node (Tree a) a (Tree a)

deriving Show

For example, here’s a binary search tree with the elements f,

10, 12, 15, 16:

Node

(Leaf 5)

10

(Node

(Leaf 12)

15

(Leaf 16)

)

Polymorphic Binary Search Tree

Here’s a function that looks up a value in a tree:

treemem :: Ord a => Tree a -> a -> Bool

treemem (Leaf v) x = x == v

treemem (Node l v r) x

| x == v = True

| x < v = treemem l x

| x > v = treemem r x

Examples:

> let t = Node (Leaf 5) 10 (Node (Leaf 12) 15 (Leaf 16))

> treemem t 16

True

> treemem t 5

True

> treemem t 1

False

Homework 1

Write the function depth which calculates the depth of a tree,

leaves which returns the leaves of a tree, and inorder

which returns a list of the nodes of the tree in inorder:

depth :: Tree a -> Int

leaves :: Tree a -> [a]

inorder :: Tree a -> [a]

Homework 1. . .

Examples:

> let t1 = Node (Leaf 5) 10 (Leaf 15)

> let t2 = Node (Leaf 5) 10 (Node (Leaf 12) 15 (Leaf 16))

> depth t1

2

> depth t2

3

> leaves t1

[5,15]

> leaves t2

[5,12,16]

> inorder t1

[5,10,15]

> inorder t2

[5,10,12,15,16]

Homework 2

Here’s a datatype for arithmetic expressions:

data Expr = Val Int

| Add Expr Expr

| Sub Expr Expr

| Mul Expr Expr

| Div Expr Expr

| Neg Expr

deriving Show

Write a function eval e which evaluates an arithmetic

expression e:

eval :: Expr -> Int

Homework 2. . .

Examples:

> eval (Val 5)

5

> eval (Add (Val 6) (Val 5))

11

> eval (Add (Mul (Val 7) (Val 5)) (Val 7))

42

