CSc 372

Comparative Programming Languages

20 : Prolog - Matching

Department of Computer Science University of Arizona

Christian Collberg

Introduction

Unification \& Matching

- So far, when we've gone through examples, I have said simply that when trying to satisfy a goal, Prolog searches for a matching rule or fact.
- What does this mean, to match?
- Prolog's matching operator or $=$. It tries to make its left and right hand sides the same, by assigning values to variables.
- Also, there's an implicit $=$ between arguments when we try to match a query

$$
\text { ?- } f(x, y)
$$

to a rule

$$
f(A, B):-\ldots
$$

Matching Examples

The rule: \qquad

```
deriv(U `C, X, C * U `L * DU) :-
    number(C), L is C - 1,
    deriv(U, X, DU).
```

?- deriv(x ^3, x, D).
D $=1 * 3 * x^{\wedge} 2$

The goal:

- x ^3 matches U "C

$$
\text { - } x=U, C=3
$$

- x matches X
- D matches C * U ^L * DU

Matching Examples. . .

$$
\begin{aligned}
& \operatorname{deriv}(U+V, X, D U+D V):- \\
& \quad \operatorname{deriv}(U, X, D U), \\
& \quad \operatorname{deriv}(V, X, D V) . \\
& ?-\quad \operatorname{deriv}\left(x^{\wedge} 3+x^{\wedge} 2+1, x, D\right) . \\
& D=1 * 3 * x^{\wedge} 2+1 * 2 * x^{\wedge} 1+0
\end{aligned}
$$

- x ^3 $+\mathrm{x} \mathrm{x}^{2}+1$ matches $\mathrm{U}+\mathrm{V}$
- $x^{\wedge} 3+x^{\wedge} 2$ is bound to U
- 1 is bound to V

Matching Algorithm

Can two terms A and F be "made identical," by assigning values to their variables?

Two terms A and F match if
(1) they are identical atoms
(2) one or both are uninstantiated variables
(3) they are terms $A=f_{A}\left(a_{1}, \cdots, a_{n}\right)$ and $F=f_{F}\left(f_{1}, \cdots, f_{m}\right)$, and
(1) the arities are the same ($n=m$)
(2) the functors are the same $\left(f_{A}=f_{F}\right)$
(3) the arguments match $\left(a_{i} \equiv f_{i}\right)$

Matching - Examples

A	F	$A \equiv F$	variable subst.
a	a	yes	
a	b	no	
$\sin (X)$	$\sin (a)$	yes	$\theta=\{X=a\}$
$\sin (a)$	$\sin (X)$	yes	$\theta=\{X=a\}$
$\cos (X)$	$\sin (a)$	no	
$\sin (X)$	$\sin (\cos (a))$	yes	$\theta=\{X=\cos (a)\}$

Matching - Examples. . .

A	F	$A \equiv F$	variable subst.
likes(c, X)	likes (a, X)	no	
likes (c, X)	likes (c, Y)	yes	$\theta=\{X=Y\}$
likes (X, X)	likes (c, Y)	yes	$\theta=\{X=c, X=Y\}$
likes (X, X)	likes $(c,-)$	yes	$\theta=\{X=c, X=-47\}$
likes $(c, a(X))$	likes (V, Z)	yes	$\theta=\{V=c, Z=a(X)\}$
likes $(X, a(X))$	likes (c, Z)	yes	$\theta=\{X=c, Z=a(X)\}$

Matching Consequences

Consequences of Prolog Matching:

- An uninstantiated variable will match any object.
- An integer or atom will match only itself.
- When two uninstantiated variables match, they share:
- When one is instantiated, so is the other (with the same value).
- Backtracking undoes all variable bindings.

Matching Algorithm

FUNC Unify (A, F: term) : BOOL;
IF Is_Var (F) THEN Instantiate F to A
ELSIF Is_Var(A) THEN Instantiate A to F
ELSIF Arity (F) \neq Arity (A) THEN RETURN FALSE
ELSIF Functor (F) \neq Functor (A) THEN RETURN FALSE ELSE

FOR each argument i DO
IF NOT Unify(A(i), F(i)) THEN RETURN FALSE
RETURN TRUE;

Visualizing Matching

- From Prolog for Programmers, Kluzniak \& Szpakowicz, page 18.
- Assume that during the course of a program we attempt to match the goal $\mathrm{p}(\mathrm{X}, \mathrm{b}(\mathrm{X}, \mathrm{Y})$) with a clause C, whose head is $p(X, b(X, y))$.
- First we'll compare the arity and name of the functors. For both the goal and the clause they are 2 and p, respectively.

Visualizing Matching. . .

Visualizing Matching. . .

- The second step is to try to unify the first argument of the goal (X) with the first argument of the clause head (A).
- They are both variables, so that works OK.
- From now on A and X will be treated as identical (they are in the list of variable substitutions θ).

Visualizing Matching. . .

Visualizing Matching. . .

- Next we try to match the second argument of the goal (b (X, $\mathrm{Y})$) with the second argument of the clause head (b(c, A)).
- The arities and the functors are the same, so we go on to to try to match the arguments.
- The first argument in the goal is X , which is matched by the first argument in the clause head (c). I.e., X and c are now treated as identical.

Visualizing Matching. . .

Visualizing Matching. . .

- Finally, we match A and Y. Since $A=X$ and $X=c$, this means that $\mathrm{Y}=\mathrm{c}$ as well.

Visualizing Matching. . .

Summary

[^0]
Readings and References

- Read Clocksin-Mellish, Sections 2.4, 2.6.3.

Prolog So Far. . .

- A term is either a
- a constant (an atom or integer)
- a variable
- a structure
- Two terms match if
- there exists a variable substitution θ which makes the terms identical.
- Once a variable becomes instantiated, it stays instantiated.
- Backtracking undoes variable instantiations.
- Prolog searches the database sequentially (from top to bottom) until a matching clause is found.

[^0]:

