CSc 372

Comparative Programming Languages

22 . Prolog — Lists

Department of Computer Science
University of Arizona

Copyright (© 2011 Christian Collberg

collberg@gmail.com

Introduction

Prolog Lists

Haskell:

>1 : 2 : 3 : I[]
[1,2,3]

Prolog:

?7- L= .Ca, .(b, .Cc, [N
L = [a, b, c] b/\

[]

@ Both Haskell and Prolog build up lists using cons-cells.
@ In Haskell the cons-operator is :, in Prolog ..

Prolog Lists. . .

- L= .(a, .C.C1, .C2, [1)), .(b, .(c, [1D)))

@ Unlike Haskell, Prolog lists can contain elements of arbitrary
type.

Matching Lists — [Head | Taill

A F A = F variable subst.
[] [] yes
[] a no
[a] [] no
[[]] [] no
[a | [b, c]] L yes L=[a,b,c]

[a] [(H | T]1 yes H=a, T=[]

Matching Lists — [Head | Taill...

A F A = F variable subst.
[a, b, cl [H | T] yes H=a,T=[b, c]
[a, [1, 2]]1 [H | TI] yes H=a, T=[[1, 2]]
[[1, 2], a] [H | T] yes H=[1,2], T=[al
[a, b, c] [X, Y, c] yes X=a, Y=c
[a, Y, c] [X, b, Z] yes X=a, Y=b, Z=c

[a, b] [X, c] no

Member

Prolog Lists — Member

(1)
(2)

(1)
(2)

(1)

memberl (X, [Y]|_])
member1 (X, [_|Y])

member2 (X, [X|_]).

member2(X, [_|Y])

member3 (X, [Y|Z])

- X =Y.
:— memberl1 (X, Y).

:— member2(X, Y).

:— X = Y; member3(X,Z).

Prolog Lists — Member. . .

member (x, [a,
yes

member (x, [a,
no

member (x, [a,
no

member (Z, [a,
Z = a
Z = [x, vyl

Z = f

b, ¢, x, fl).

b, c, f]).

[x, y1, £1).

[x, yl, f1).

Prolog Lists — Member. ..

menber 1(x, [a, b, x, d])

(1) ~ 7 (2)

menber 1(x, [a| _]) nmenber1(x, [_|[b,x,d]])

fail

menber (X, [b, x, d])
(1 (2)

menber1(x, [Db]| _]) nenber}(x,[_|[x,d]])

| < T
x=b (1)~ T~

P nerrber|1(x, [x] 1)

X=X

succeed

Append

Prolog Lists — Append

fol |l owed by makes
this one this one this one

\\\\\i‘ \\\ }//
append(L1, L2, L3).

(1) append([], L, L)
(2) append ([X|L1], L2, [X|L3]) :-
append (L1, L2, L3).

@ Appending L onto an empty list, makes L.

@ To append Ly onto L1 to make L3

@ Let the first element of L; be the first element of Ls.
@ Append L, onto the rest of L1 to make the rest of Ls.

Prolog Lists — Append. ..

—

app([a, b]’ [1’ 2]’ Q L=[a,b,1,2]

(1) S~ (2) -

app([],L,L) app(lallb]],[1, 2],[aLL3])

7
e
e

fail

7

app([b], [1,2],L3)

AN
(1) S~ (2) \\\\

app([],L,L) app([bl[]],[1, 2],[b|E/3 1)

e

f ail (1), 7 T

e
7

/’\\A//
app([],[1,2],[1,2])
succeed

Prolog Lists — Append. ..

L=[a, b, 1, 2]

\

app([a, b], [1, 2], L)

N\

app([al[b]].[1,2],[a|L3])

N\

app([b][[]].[1,2],[blL3"])

N\

app([].[1,2],[1,2])

- L=1[a | L3], L3 =[b | L3’], L3’ = [1,2].
L = [a,b,1,2], L3 = [b,1,2], L3’ = [1,2]

Prolog Lists — Using Append

@ append([a,b], [1,2], L)
@ What's the result of appending [1,2] onto [a,b]?
Q append([a,b],[1,2],[a,b,1,2])
@ Is [a,b,1,2] the result of appending [1,2] onto [a,b]?
© append([a,b], L, [a,b,1,2])
@ What do we need to append onto [a,b] to make [a,b,1,2]7

@ What's the result of removing the prefix [a,b] from
[a,b,1,2]7

Prolog Lists — Using Append. ..

Q append(L, [1,2], [a,b,1,2])
@ What do we need to append [1,2] onto to make [a,b,1,2]7
@ What's the result of removing the suffix [1,2] from
[a,b,1,2]7
@ append(L1, L2, [a,b,1,2])
@ How can the list [a,b,1,2] be split into two lists L1 & L27

Prolog Lists — Using Append. ..

app([a, b], L,\[a, b, 1, 2])

(1) <~ \"(‘25“\\
app([]1,L,L) app([a|[b]]%L2,[a|[b,1,2]])
f ai | /

/
/

app([b],L2",[b,1,2])

//gg;////<i:j>\<z{\\\

app([1. L. L) app([b|[]],g§“’,[b|[1,2]])

fail

app([1,L2'"",[1,2])

-
~
~
~

(1) -
app([].[1,2].,[1,2])

succeed

Prolog Lists — Using Append. ..

?7- append(L1, L2, [a,b,c]).

L1
L2

L1
L2

L1
L2

L1
L2

no

[]
[a,b,c] ;

[a]
[b,c] ;

[a,b]
[c] ;

[a,b,c]
(1 ;

Prolog Lists — Using Append. ..

app(L1, L2, [a, b, 1, 2])

(1) (2)
app([].[a, b,1,2] app([alLl],L2,[a|[b,1,2]])
[a, b, 1,2]) ‘
succeed

app(L1, L2 ,[b, 1, 2])

e

app([].,[b, 1,2] app([b[LY], L2, [Db|[1,2]])

[b, 1,2]) \

succeed app(L1,L2""",[1,2])

(1)
app([],[1,2],[1,2])
succeed

Prolog Lists — Reusing Append

member Can we split the list Y into two lists such that X is at
the head of the second list?

adjacent Can we split the list Z into two lists such that the two
element X and Y are at the head of the second list?

last Can we split the list Y into two lists such that the
first list contains all the elements except the last one,
and X is the sole member of the second list?

Prolog Lists — Reusing Append. ..

member (X, Y) :- append(_, [XI|Z], Y).
?- member(x, [a,b,x,d]).

adjacent(X, Y, Z) :- append(_, [X,YIQ], Z).
7- adjacent(x,y,[a,b,x,y,d]).

last(X, Y) :- append(_, [X], Y).
?- last(x, [a,b,x]).

Reversing a List

Prolog Lists — Reverse

e 6 ¢ ¢

reversel is known as naive reverse.
reversel is quadratic in the number of elements in the list.
From The Art of Prolog, Sterling & Shapiro pp. 12-13, 203.

Is the basis for computing LIPS (Logical Inferences Per
Second), the performance measure for logic computers and
programming languages. Reversing a 30 element list (using
naive reverse) requires 496 reductions. A reduction is the
basic computational step in logic programming.

Prolog Lists — Reverse. . .

@ reversel works like this:

€ Reverse the tail of the list.
@ Append the head of the list to the reversed tail.

@ reverse?2 is linear in the number of elements in the list.

@ reverse?2 works like this:

@ Use an accumulator pair In and Out

@ In is initialized to the empty list.

© At each step we take one element (X) from the original list (Z)
and add it to the beginning of the In list.

@ When the original list (Z) is empty we instantiate the Out list
to the result (the In list), and return this result up through the
levels of recursion.

Prolog Lists — Reverse. . .

reversel ([]1, [1).
reversel ([X|Q], Z) :-
reversel(Q, Y), append(Y, [X], Z).

reverse2(X, Y) :- reverse2(X, [], Y).
reverse2([X|Z], In, Out) :-

reverse(Z, [X|In], Out).
reverse2([], Y, Y).

Reverse — Naive Reverse

revi([a,b,c,d],[d, c, Db, a])

/.\
revi([b,c,d],[d,c,b]) app([d,c,b],[a],[d,c,Db,a])
°

revi([c,d],[d,c]) app([d,c],[b],[d c, b]) app(lc,b],[a],[c,b,a])

e N N

revi([d],[d]) app([d],[c], [d c]) app(lcl,[b],[c,b]) app(lb],[a],[b, a])

N N

app([],[C],[C]) app([1.[b],[b]) app(l].[a].[a])
revi([],[])app(l],[d],[d])

Reverse — Smart Reverse

reverse2([a, b,c,d], D D=[d, c, b, a]
N
reverse2([a,b,c,d],[], D

oy

reverse2([b,c,d],[a], D
A

e
reverse2([c,d],[Db, a]l, D
;A

/
reverse2([d],[c, b, a]l, D
, A
V////z\§ \\
reverse2([],[d,c,Db,a], D

Delete

Prolog Lists — Delete. . .

del et e fromthis to yield
this one Iist\\ thi/slist

delete(X, L1, L2).

delete_one @ Remove the first occurrence.

delete_all @ Remove all occurrences.

delete_struct @ Remove all occurrences from all levels of a list
of lists.

Prolog Lists — Delete. . .

?- delete_one(x, [a, x, b, x], D).
D = [a, b, x]
?- delete_all(x, [a, x, b, x], D).
D = [a, b]
?- delete_all(x, [a, x, b, [c, x], x], D).
D = [a, b, [c, x]]
?- delete_struct(x, [a, x, [c, x], v(x)], D).
D = [a, b, [c], v(x)]

Prolog Lists — Delete. . .

delete_one

@D If X is the first element in the list then return
the tail of the list.

@ Otherwise, look in the tail of the list for the first
occurrence of X.

Prolog Lists — Delete. . .

delete_all

@ If the head of the list is X then remove it, and
remove X from the tail of the list.

@ If X is not the head of the list then remove X
from the tail of the list, and add the head to the
resulting tail.

© When we're trying to remove X from the empty
list, just return the empty list.

Prolog Lists — Delete. . .

@ Why do we test for the recursive boundary case
(delete_all (X, [],[1)) last? Well, it only happens once so
we should perform the test as few times as possible.

@ The reason that it works is that when the original list (the
second argument) is [], the first two rules of delete_all
won't trigger. Why? Because, [] does not match [H|TI,
that's why!

Prolog Lists — Delete. . .

delete_struct

@ The first rule is the same as the first rule in
delete_all.

@ The second rule is also similar, only that we
descend into the head of the list (in case it
should be a list), as well as the tail.

© The third rule is the catch-all for lists.

Q@ The last rule is the catch-all for non-lists. It
states that all objects which are not lists (atoms,
integers, structures) should remain unchanged.

Prolog Lists — Delete. . .

delete_one (X, [X|Z],Z).

delete_one (X, [VIZ],[VIY]) :-
X \==1V,
delete_one(X,Z,Y).

delete_all (X, [X|Z],Y) :- delete_all(X,Z,Y).
delete_all (X, [VI|Z],[VIY]) :-

X \==1V,

delete_all(X,Z,Y).
delete_all (X, [],[]).

Prolog Lists — Delete. . .

(1) delete_struct(X,[X|Z],Y) :-
delete_struct(X, Z, Y).

(2) delete_struct(X,[VIZ],[QlY]):-
X \==1V,
delete_struct(X, V, Q),
delete_struct(X, Z, Y).

(3) delete_struct(X, [J1, [1).
(4) delete_struct(X, Y, Y).

Prolog Lists — Delete. . .

Y = [[[11]
d_s(x, [x, [x, [x11], V)
(1)
d_s(x, [[x, [x]1]. [QAY])
° —7 T
(2)_
d s(x, [x, [x]], O d_s(x,[],V)
A A
/ 3 |
(0 0 ()‘ '
d_s(x, [[x]]. [QY]) d_stx L1 11D
7 <=
® >
d_sOG X Q- (2)-7
J - d_s(x, [1, V)
(1) A
, (3)
d_s(x,[1,Y)
A d_s(x, [1, [1)
(3)

d_s(x [1.11)

Application: Sorting

Sorting — Naive Sort

permutation(X, [Z|V]) :-
delete_one(Z,X,Y),
permutation(Y,V).

permutation([], []).

ordered ([X]).

ordered ([X,Y|Z]) :-
X =<Y,
ordered([Y|Z]).

naive_sort (X, Y) :-
permutation(X, Y),
ordered(Y).

Sorting — Naive Sort. . .

@ This is an application of a Prolog cliche known as
generate-and-test.

naive._sort

@ The permutation part of naive_sort
generates one possible permutation of the input

@ The ordered predicate checks to see if this
permutation is actually sorted.

O If the list still isn't sorted, Prolog backtracks to
the permutation goal to generate an new
permutation, which is then checked by ordered,
and so on.

Sorting — Naive Sort. . .

permutation
@ If the list is not empty we:
@ Delete some element Z from the list
@ Permute the remaining elements
© Add Z to the beginning of the list
When we backtrack (ask permutation to
generate a new permutation of the input list),
delete_one will delete a different element from
the list, and we will get a new permutation.
@ The permutation of an empty list is the empty
list.

@ Notice that, for efficiency reasons, the boundary case is put
after the general case.

Sorting — Naive Sort. . .

delete_one Removes the first occurrence of X (its first
argument) from V (its second argument).

@ Notice that when delete_one is called, its first
argument (the element to be deleted), is an
uninstantiated variable. So, rather than deleting
a specific element, it will produce the elements
from the input list (4 the remaining list of
elements), one by one:

?- delete_one(X,[1,2,3,4],Y).

X =1, Y=1[2,3,4] ;
X =2,7=1[1,3,4] ;
X =3, Y=10[1,2,4] ;
X =4, Y=1[1,2,3] ;

no.

Sorting — Naive Sort. . .

The proof tree in the next slide illustrates
permutation([1,2,3],V). The dashed boxes give variable values
for each backtracking instance:

First instance: delete_one will select X=1 and Y=[2,3]. Y will
then be permuted into Y’>=[2,3] and then (after
having backtracked one step) Y’=[3,2]. In other
words, we generate [1,2,3], [1,3,2].

Second instance: We backtrack all the way back up the tree and
select X=2 and Y=[1,3]. Y will then be permuted
into Y’=[1,3] and then Y’=[3,2]. In other words,
we generate [2,1,3], [2,3,1].

Sorting — Naive Sort. . .

Third instance: Again, we backtrack all the way back up the tree
and select X=3 and Y=[1,2]. We generate [3,1,2],
[3,2,1].

?7- permutation([1,2,3],V).
Vv = [1,2,3] ;

vV =1[1,3,2] ;
vV =1[2,1,3] ;
v = [2,3,1] ;
v = [3,1,2] ;
vV =[3,2,1] ;

Permutations

perm([1,2,3],[XIV]y-—11,2,3],[1,3,2],[2,1,3],[2,3,1], ...

//////////////1;\\\\\\\\\\\\;;:;:\-_jJ:{ 2,3],[3,21,[1,2].[2,1], ...

del _one(X [1,2,3],Y) per (Y, IX V). vgrsyir21. 13,01, .
________ () T -
i X=1 | /////// el
' Y=[2, 3] del _one(X ,Y,Y) perm(Y ,[X |V '])
TIIIIIIY T T \
i X=2 : i é ;[23] : |)Y(:fZ] | /.\ \\\
:_Yf[_]:,_B_]_: :—_—_—_—_—_—_—_:', :—_—_—_—j—_—_—_:' del _One(X’ Y, Y ’) pern‘([] -V ’)
T - X =1 : - X =3 : B ‘
=S ye[3) o yepa] X
:Y:[1,2]| ::::—_::::' I—_—_—_—_—_—_—_:' : Y ’:[]_: \/”:[]
““““ SooXx=l X =2

Y =[2] 0y =[]

Sorting Strings

@ Prolog strings are lists of ASCII codes.
o "Maggie" = [77,97,103,103,105,101]

aless(X,Y) :-
name (X,X1), name(Y,Y1l),
alessx(X1,Y1).

alessx([],[_1_1).
alessx([X|_],[Y|]) := X <Y.
alessx([A|X],[A]Y]) :- alessx(X,Y).

Application: Mutant Animals

Mutant Animals

@ From Prolog by Example, Coelho & Cotta.
@ We're given a set of words (French animals, in our case).

@ Find pairs of words where the ending of the first one is the
same as the beginning of the second.

@ Combine the words, so as to form new “mutations’.

Mutant Animals. . .

© 0 606 O©6

Find two words, Y and Z.

Split the words into lists of characters. name (atom, list)
does this.

Split Y into two sublists, Y1 and Y2.

See if Z can be split into two sublists, such that the prefix is
the same as the suffix of Y (Y2).

If all went well, combine the prefix of Y (Y1) with the suffix of
Z (Z2), to create the mutant list X.

Use name to combine the string of characters into a new atom.

Mutant Animals. . .

mutate(M) :-

animal(Y), animal(Z), Y \== Z,
name (Y,Ny), name(Z,Nz),

append (Y1,Y2,Ny), Y1 \==[],
append (Y2, Z2, Nz), Y2 \== [],
append(Y1,Nz,X), name(M,X).

animal (alligator) .
animal (tortue).
animal (caribou) .
animal (ours) .
animal (cheval).
animal (vache) .
animal (lapin) .

crocodilex/
turtle * /
caribou */

bear */
horse */
cCowW */
rabbit */

Mutant Animals. . .

?7- mutate (X).

X

X
X
X
X

alligatortue ;
caribours ;
chevalligator ;
chevalapin ;
vacheval

alligator+
caribou +
cheval +
cheval +
vache +

tortue */
ours */
alligator*/
lapin */
cheval */

Summary

Prolog So Far. ..

@ Lists are nested structures

@ Each list node is an object

o with functor . (dot).
@ whose first argument is the head of the list
@ whose second argument is the tail of the list

@ Lists can be split into head and tail using [H|T].
@ Prolog strings are lists of ASCII codes.

@ name (X,L) splits the atom X into the string L (or vice versa).

