
CSc 372

Comparative Programming Languages

23 : Prolog — The Database

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Christian Collberg

collberg@gmail.com

Introduction

Manipulating the Database

So far we have assumed that the Prolog database is static, i.e.
that it is loaded once with the program and never changes
thereafter.

This is not necessarily true; we can add or remove facts and
rules from the database at will.

This is not necessarily good programming practice, but
sometimes it is necessary and sometimes it makes for elegant
programs.

In a nutshell:
1 Allows us to program with side effects.
2 Justified under some circumstances.
3 Often inefficient.

Operations on the Prolog
Database

Assert

assert(X) adds a clause to the database.
Not defined in gprolog!

asserta(X) adds a clause to the beginning of the database.

assertz(X) adds a clause to the end of the database.

assert always succeeds, and backtracking does not undo the
assertion.

Assert. . .

assert can be used in machine learning programs, program
which learn new facts as they progress.

In some Prolog implementations you have to specify whether
a certain clause is dynamic (new clauses can be added to the
database during execution) or static:

:- dynamic(hanoi/5).

This means that we can add and remove clauses with five
arguments whose functor is hanoi.

Assert . . . – Example

Write a program that learns the addresses of places in a city.

This program assumes a Manhattan-style city layout:
locations are given as the intersection of streets and avenues.

?- loc(whitehorse, Ave, St).

Ave = 8, St = 11

?- loc(airport, Ave, St).

-- this airport

what avenue? 5.

what street? 32.

Ave = 5, St = 32

?- loc(airport, Ave, St).

Ave = 5, St = 32

Assert . . . – Example

location(whitehorse, 8, 11).

location(microsoft, 8, 42).

location(condomeria, 8, 43).

location(plunket, 7, 32).

% Do we know the location of X?

loc(X, Ave, Str) :- location(X, Ave, Str), !.

% if not, learn it!

loc(X, Ave, Street) :-

nonvar(X), var(Ave), var(Str),

write(’-- this ’), write(X), nl,

write(’what avenue? ’), read(Ave),

write(’what street? ’), read(Street),

assert(location(X, Ave, Str)).

Retract

retract(X) removes the first clause that matches X.

assert and retract behave differently on backtracking.
When we backtrack through assert nothing happens. When
we backtrack to retract Prolog continues searching the
database trying to find another matching clause. If one is
found it is removed.

If the argument to retract(clause(X)) contains some
uninstantiated variables they will be instantiated.

retract(X) fails when no matching clause can be found.

Retract. . .

Backtracking does not undo the removal.

retractall(X) :-

retract(X), fail.

retractall(X) :-

retract((X :- Y))),

fail.

retractall().

Clause

clause(X, Y) finds all clauses in the database with head X

and body Y.

append([], X, X).

append([A|B],C,[A|D]) :-

append(B, C, D).

?- clause(append(X, Y, Z), T).

X=[], Y= 3, Z= 3, Y=true ;

X=[4| 5], Y= 6, Z=[4| 7],

Y=append(5, 6, 7) ;

no

Clause. . .

The goal clause(X, Y) instantiates X to the head of a goal
(the left side of :-) and Y to the body.

X can be just a variable (in which case it will match all the
clauses in the database), a fully instantiated (ground) term, or
a term which contains some uninstantiated variables.

Note that a fact has a body true.

Clause. . .

List all the clauses whose head matches X.

list(X) :- clause(X, Y),

print(X, Y),

write(’.’), nl, fail.

list().

print(X, true) :- !, write(X).

print(X, Y) :- write((X :- Y))).

?- list(append(X, Y, Z)).

append([], 4, 4).

append([5| 6], 7,[5| 8]) :-

append(6, 8, 8).

Clausal Representation of Data Structures

Normally we represent a data structure using a combination of
Prolog lists and structures.

A graph can for example be represented as a list of edges,
where each edge is represented by a binary structure:

[edge(a,b), edge(c,b), edge(a,d), edge(c,d)]

However, it is also possible to use clauses to represent data
structures such as lists, trees, and graphs.

It is usually not a good idea to do this, but sometimes it is
useful, particularly when we are faced with a static data
structure (one which does not change, or changes very little).

Clauses as Data Structures – Lists

list(c).

list(h).

list(r).

list(i).

list(s).

process list :- list(X), process item(X), fail.

process list.

Clauses as Data Structures – Trees

t(node1, node2, phone(thompson, 2432), node3).

t(node2, nil, phone(adams, 5488), node4).

t(node3, nil, phone(white, 2432), nil).

t(node4, nil, phone(mcbride, 1781), nil).

Clauses as Data Structures – Trees. . .

nil

phone(thomson, 2432).

node3

phone(white, 2432).
node2

phone(adams, 5488).

node4

phone(mcbride,1781)

nilnil

node1

Clauses as Data Structures – Trees. . .

inorder(nil).

inorder(Node) :-

t(Node, Left, P, Right),

inorder(Left),

write(P), nl,

inorder(Right).

?- inorder(node1).

phone(adams,5488)

phone(mcbride,1781)

phone(thompson,2432)

phone(white,2432)

Clausal Representation. . .

In general it is a bad idea to represent data in this way.

Inserting and removing data has to be done using assert and
retract, which are fairly expensive operations.

However, in Prolog implementations which support clause

indexing, storing data in clauses gives us a way to access
information directly, rather than through sequential search.

The reason for this is that indexing uses hash tables to access
clauses.

Switches

Switches

From Prolog by Example, Coelho & Cotta.

In some cases it is a good idea to use global data rather than
passing it around as a parameter.

Assume we want to be able to switch between short and long
error messages. Instead of extending every clause by an extra
parameter (clumsy and inefficient) we use a global switch.

The first clause in turnon will fire if the switch is already
turned on.

The first clause in turnoff fails if Switch was already off.

The first clause in flip fails if Switch was turned off, in
which case the second clause fires and the switch is turned on.

Switches. . .

turnon(Switch) :-

call(Switch), !.

turnon(Switch) :-

assert(Switch).

turnoff(Switch) :-

retract(Switch).

turnoff().

flip(Switch) :-

retract(Switch), !.

flip(Switch) :-

assert(Switch).

Switches. . .

turnon(terse mess).

.....

flip(terse mess).

message(C) :-

terse mes, write (’Error!’), nl, !.

message(C) :-

write (’We are sorry to...’),

write (’error has occurred near the symbol ’),

write(C), write(’. Please accept our...’),

nl, !.

Memoization

Memoization

Many recursive program are extremely inefficient because they
solve the same subproblem several times.

In dynamic programming the idea is simply to store the results
of a computation in a table, and when we try to solve the
same problem again we retrieve the value from the table
rather than computing the value once more.

There is a variation of dynamic programming known as
memoization.

Memoization – Towers of Hanoi

I’m sure you’ve heard of the Towers of Hanoi problem. It is
one first year computer science students are tortured with to
no end.

The problem is to move a number of disks from a peg A to a
peg B, using a peg C as intermediate storage. Additionally, we
are only allowed to put smaller disks onto larger disks.

A recursive solution of the problem to move N disks from A
to B is as follows:

1 Move N − 1 disks from A to C .
2 Move the remaining (largest) disk from A to B.
3 Move the N − 1 disks from C to B.

Memoization – Towers of Hanoi. . .

B CA

Memoization – Towers of Hanoi. . .

:- op(100, xfx, to).

hanoi(1, A, B, C, [A to B]).

hanoi(N, A, B, C, Ms) :-

N > 1,

N1 is N-1,

hanoi(N1, A, C, B, M1),

hanoi(N1, C, B, A, M2),

append(M1, [A to B|M2], Ms).

go(N, Moves) :-

hanoi(N, a, b, c, Moves).

Memoization – Towers of Hanoi. . .

?- go(2,M).

M = [a to c, a to b, c to b]

?- go(3,M).

M = [a to b, a to c, b to c,

a to b, c to a, c to b,

a to b]

?- go(4,M).

M = [a to c, a to b, c to b,

a to c, b to a, b to c,

a to c, a to b, c to b,

c to a, b to a, c to b,

a to c, a to b, c to b]

Memoization – Towers of Hanoi. . .

hanoi(1, A, B, C, [A to B]).

hanoi(N, A, B, C, Ms) :-

N > 1, R is N-1,

lemma(hanoi(R, A, C, B, M1)),

hanoi(N1, C, B, A, M2),

append(M1, [A to B|M2], Ms).

lemma(P) :- call(P),

asserta((P :- !)).

go(N, Pegs, Moves) :-

hanoi(N, A, B, C, Moves),

Pegs=[A, B, C].

Memoization – Towers of Hanoi. . .

hanoi(1, 3, 5, 4, [3 to 5]) :- !.

hanoi(2, 3, 4, 5,

[3 to 5, 3 to 4, 5 to 4]) :- !.

hanoi(3, 3, 5, 4,

[3 to 5, 3 to 4, 5 to 4,

3 to 5, 4 to 3, 4 to 5,

3 to 5]) :- !.

Example – Gensym

Example – Gensym

From Programming in Prolog, Clocksin & Mellish.

If we want to store data between different top-level queries,
then using the database is our only option.

In the following example we want to generate new atoms.

In order to make this work, gensym has to store the number
of atoms with a given prefix that it has generated so far. The
clause current num(Root, Num) is used for this purpose.
There is one current num clause for each kind of atom that
we generate.

Example – Gensym. . .

gensym(Root, Atom) :-

get num(Root, Num),

name(Root, Name1),

int name(Num, Name2),

append(Name1, Name2, Name),

name(Atom, Name).

get num(Root, Num) :-

retract(current num(Root, Num1)),

!, Num is Num1 + 1,

asserta(current num(Root, Num)).

get num(Root, 1) :-

asserta(current num(Root, 1)).

Example – Gensym. . .

int name(Int, List) :- int name(Int, [], List).

int name(I, Sofar, [C|Sofar]) :-

I<10, !, C is I+48.

int name(I, Sofar, List) :-

Tophalf is I/10, Bothalf is I mod 10,

C is Bothalf + 48,

int name(Tophalf, [C|Sofar], List).

?- gensym(chris, A).

A = chris1

?- gensym(chris, A).

A = chris2

?- gensym(chris, A).

A = chris3

Readings and References

Read Clocksin-Mellish, Chapter 6.

