
CSc 372

Comparative Programming Languages

27 : Ruby — Introduction

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Christian Collberg

collberg@gmail.com

What is Ruby?

Everything is an object.

Everything can be changed: method can be added to classes
at runtime, for example.

There’s no “compile-time”: everything happens at runtime.

Variables have no type, they can contain different kinds of
objects at different times.

Classes are not “types” the way they are in Java — A class is
identified by the messages (method calls) it responds to.

Ducks!

Create a class and a constructor (it’s called initialize).

Instance variables start with @.

Duck.new is a standard class (static) method that creates a
new object.

The class definition is actually executable: it’s executed at
runtime and creates the class.

The statements after the class definition are also executed, as
the file is loaded.

Defining a class

class Duck

def initialize(name,type)

@name = name

@type = type

end

end

d1 = Duck.new("larry","rubber")

puts d1

Running Ruby

Run like this:

> ruby ducks.rb

Or like this:

> irb --prompt simple -r ducks.rb

>> d1 = Duck.new("larry","rubber")

>> puts d1

irb is the interactive Ruby shell.

http://ruby-doc.org/docs/ProgrammingRuby/html/irb.html

http://ruby-doc.org/docs/ProgrammingRuby/html/irb.html

Running Ruby

You can also (if you’re on a Unix system) put your script in a
file like this:

#!/usr/local/bin/ruby

puts "hello ducks!"

Make the file executable, and then you can execute it like any
other Unix program:

> chmod a+rx hello.rb

> hello.rb

hello ducks!

Syntax

No semi-colons, as long as you keep one statement per line.

Comments start with a # and go to the end of the line.

This is a comment.

You can leave out parentheses around method arguments (but
don’t). These are the same:

This is a comment.

puts("arg1","arg2")

puts "arg1","arg2"

Pretty printing

To print an object in a pretty way, we can redefine to s. This
is like overriding Java’s toString.

class Duck

def to_s

@name + " : " + @type

end

end

puts d1

Adding a method

Let’s add a new method, quack!.

Method names can end in ! (typically for methods that
change some data), ? (methods that return true/false), and =

(setter methods).

Notice that we’re not actually editing the class definition, but
simply adding another method at runtime!

class Duck

def quack!

puts "quack!"

end

end

d1.quack!

Method parameters

Class names should start with an upper case letter, method
names with a lower case.

Add a parameter to quack!. The new definition replaces the
old one. There’s no overloading (methods with different
types/number of parameters are different) like in Java.

class Duck

def quack!(times)

puts "quack! " * times

end

end

d1.quack!(5)

Overloaded operators

There is plenty of operator overloading, however, and you can
add your own overloaded operators, if you want.

>> 5*7

=> 35

>> 5*"7"

TypeError: String can’t be coerced into Fixnum

>> "7"*6

=> "777777"

Types

Variables don’t have type, but objects have. You can ask an
object’s type using .class.

>> 5**57

=> 6938893903907228377647697925567626953125

>> 5.class

=> Fixnum

>> (5**57).class

=> Bignum

>> "duck!".class

=> String

>> r1 = Duck.new("larry","rubber")

>> r1.class

=> Duck

Arrays

Arrays can contain any type of object.

Arrays are indexed by integers, starting from 0.

You can break a line into two parts if you end the first one
with an operator (, in this case).

flock = [d1,Duck.new("ruby","rubber"),

"roast duck"]

puts flock

puts flock[0]

puts flock[1..2]

flock[0] = "kao ya"

puts flock

Hashes

Hashtables are indexed by, well, anything. You can map one
object to any other kind of object.

flock = {

d1 => "hot",

Duck.new("ruby","rubber") => "cute",

"roast duck" => "tasty"

}

puts flock

Hashes

OK, that’s ugly. We need to change the way the Hash class
prints out a table. No problem!

class Hash

def to_s

s = ""

self.each do |key,value|

s = s + key.to_s + "\t=>\t" +

value.to_s + "\n"

end

return s

end

end

Hashes

This is a Ruby iterator. each is a method which generates all
pairs of keys and values.

|key,value| are local variables within the do...end block.
each will invoke this block (giving key and value their
values) for every pair in the hashtable.

self.each do |key,value|

s = s + key.to_s + "\t=>\t" +

value.to_s + "\n"

end

<<

Many classes define the <<-operator. For strings, it appends a
value onto the end of the string. For arrays, it adds an
element to the end of the array.

s = "yo"

s << ",dude"

a = [1,2,3]

a << "ducks are cute as can be!"

String interpolation

Inside strings you can put arbitrary Ruby code contained
within #{...}. It gets executed and the result filled in inside
the string.

self.each do |key,value|

s << "#{key.to_s}\t=>\t #{value.to_s}\n"

end

balloons = 98

puts "#{balloons} luftballons!"

puts "#{balloons+1} luftballons!"

Hashes

To look up an element in a hashtable, use hash[key].

To delete an element, use hash.delete(key).

To add/override an element, use hash[key]=value.

puts flock[d1]

puts flock[Duck.new("larry","rubber")]

flock.delete(d1)

puts flock

if-expressions

hash.has key?(key) returns true if the hash table contains
a value for that key.

if flock.has_key?("roast duck") then

puts "found supper!"

end

if flock.has_key?("roast duck") then

puts "found supper!"

else

puts "I’m hungry!):"

end

if-expressions

Everything in Ruby produces a value, even if, while, etc.

x = if flock.has_key?("roast duck") then

"(-:" else "):" end

while-loops

Like the if-expression, while ends with an end.

ducks = 0

while ducks < 10

puts "I love ducks!"

ducks += 1

end

Statement modifiers

if and while have shortcuts called modifiers. These can be
used when the body of the if or while is a single expression.

ducklovers = 1

puts "Some people love ducks!" if ducklovers > 0

puts "Some people love ducks!" \

unless ducklovers == 0

ducklovers += 1 while ducklovers < 100

puts ducklovers

Regular expressions

Ruby has regular expressions (REs) built in.

REs are used to parse and take strings apart.

An RE is given within /.../.

string.scan(re) searches through the string and returns
any matches.

scan either returns an array of the results, or can be used as
an iterator.

You can either use each or the for i in iterator do

...i ...end construction.

Regular expressions

. (period) matches any character:

"duck".scan(/./)

for i in "duck".scan(/./) do

puts i

end

"duck".scan(/./).each do |i|

puts i

end

Regular expressions

.. (period) matches any two characters.

“Normal characters” (like letters and digits) match
themselves.

“Special characters” (or meta-characters) have to be escaped
(preceded by a backslash). This includes characters like the
brackets and parentheses that have special meanings in REs.

"duck".scan(/../)

"duck42,duck46".scan(/4/)

"duck42,duck46".scan(/du/)

"duck42/duck46".scan(/\//)

Regular expressions

[...] defines a character class, a set of characters we want
to match.

[from-to] defines a range of characters

"pluckyducky".scan(/[uc]/)

"ducky".scan(/[a-k]/)

Regular expressions

Assume that we’ve got a file of ducks, where consecutive
ducks are separated by , (commas), and the name and type
of duck is separated by / (slash).

Assume that names and types consist of the characters a-z.

Start by separating the ducks:

data = "larry/rubber,ruby/rubber,carl/roast"

for i in data.scan(/[a-z\/]+/)

puts i

end

Regular expressions

Next, scan for the name and the type, and print them out.

Here we’re both using the return result as array and return

results one at a time in an iterator versions of
scan.

for i in data.scan(/[a-z\/]+/)

a = i.scan(/[a-z]+/)

puts a[0] + "=>" + a[1]

end

Regular expressions

Finally, create a hashtable containing the data we just read in
and parsed:

flock = {}

for i in data.scan(/[a-z\/]+/)

a = i.scan(/[a-z]+/)

flock[a[0]] = a[1]

end

puts flock

Regular expressions

The =~ returns the position of the match if the string matches
the regular expression, nil otherwise.

x+ matches one or more xs.

x* matches zero or more xs.

x|y matches x or y.

Regular expressions

if "donald" =~ /daisy|donald/ then

puts "duck match!"

end

if "ddddduck" =~ /d+uck/ then

puts "duck match!"

end

if "uck" =~ /d*uck/ then

puts "duck match!"

end

if "duck" =~ /d*uck/ then

puts "duck match!"

end

Regular expressions

string.sub(pattern,replace) replaces the first occurance
of pattern with replace, in string.

gsub does the same, but replaces all occurrences.

puts "duckduckduck".sub(/duck/,"ruby")

puts "duckduckduck".gsub(/duck/,"ruby")

puts "duck4luck!".gsub(/[a-z]/,"-")

puts "daisydonaldruby".gsub(/daisy|donald/,"duck")

Global Variables

Global variables are prefixed with a $ (dollar) sign.

$MyDucks = ["larry duck","sally duck"]

puts $MyDucks

nil

nil is an object, like any other. It is returned by many
operations. It represents “nothing.”

nil means false in conditional expressions.

nil.class

a = []

a[5]

Class methods and variables

Class variables start with @@.

Class methods start with the class name followed by a .

(pediod).

class Duck

@@count = 0

def initialize(name,type)

@name = name

@type = type

@@count += 1

end

def Duck.howMany

return @@count

end

end

Class methods and variables. . .

d1 = Duck.new("larry","rubber")

d2 = Duck.new("sally","rubber")

d3 = Duck.new("jessie","rubber")

puts Duck.howMany

Constants

Constants start with an uppercase letter.

This is actually why classes must start with an uppercase
letter — they are constants inserted into an internal
dictionary.

Class methods and variables

MAXDUCKS = 2

class Duck

@@count = 0

def initialize(name,type)

if @@count == MAXDUCKS then

puts "no more ducks for you!"

raise RangeError

end

@name = name; @type = type; @@count += 1

end

def Duck.howMany

return @@count

end

end

Blocks and iterators

A block of code goes between curly braces or within
do...end:

[1,2,3].each {|x| puts x}

[1,2,3].each do |x|

puts x

end

Curly braces are used for short pieces of code.

Arguments to the block is given within |...|.

Blocks and iterators

So, what does this really mean?

[1,2,3].each do |x|

puts x

end

each is a method, invoked on the array [1,2,3].

The do...end block is passed to each.

Control then “jumps” back-and-forth between each and the
block: each generates a value from the array, passes it to the
block (in the x variable), the block prints it out, and passes
control back to each so it can generate the next value.

Blocks and iterators

Of course, nothing stops us from writing our own iterators, or
to extend standard classes with new ones!

class Array

def myEach

i = 0

while i < self.length

yield self[i]

i += 1

end

end

end

[1,2,3].each {|x| puts x}

[1,2,3].myEach {|x| puts x}

Blocks and iterators

yield “jumps” into the block, passing one or more values
along.

This is sometimes known as a co-routine: You have two pieces
of code, both active at the same time, and control bounces
back and forth between them.

class Duck

def Duck.kindsOf

yield "roast"

yield "rubber"

yield "poached"

end

end

Duck.kindsOf {|x| puts x}

Readings

Read Chapter 2, page 3–41, in Programming Ruby — The

Pragmatic Programmers Guide, by Dave Thomas.

Read Chapter 13, page 163–170,173, in Programming Ruby.

Read Chapter 15, page 185–187,195, in Programming Ruby.

The first edition of this book is available online at
http://www.rubycentral.com/pickaxe/index.html.

http://www.rubycentral.com/pickaxe/index.html

. . . you’re the one. . .

