
CSc 372

Comparative Programming Languages

28 : Ruby — Classes

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Christian Collberg

collberg@gmail.com


Inheritance

Let’s start with this class Bird, with two instance variables
name and age:

class Bird

def initialize(name,age)

@name = name

@age = age

end

def to_s

"#{@name} : #{@age}"

end

end

puts Bird.new("donald",45)



Inheritance

We can can create a new class, Duck, as an extension of Bird:

class Duck < Bird

def initialize(name,age,kind)

@name = name

@age = age

@kind = kind

end

end

puts Duck.new("huey",8,"cartoon")



Overriding Methods

Now, the to s doesn’t print the new attribute kind — but we
can override it with a new definition.

Note that both to s methods now exist, one in Bird and one
in Duck.

class Duck < Bird

def initialize(name,age,kind)

@name = name

@age = age

@kind = kind

end

def to_s

"#{@name} : #{@age} : #{@kind}"

end

end



Overriding methods

We can call the method in the super class using the super

keyword — it sends the same message (with the same
arguments) to the parent class.

class Duck < Bird

def initialize(name,age,kind)

@name = name

@age = age

@kind = kind

end

def to_s

super + " : #{@kind}"

end

end



Defining getters

We can define getters by hand, like this:

class Duck

def initialize(name,age,kind)

@name = name; @age = age; @kind = kind

end

def name

@name

end

def age

@age

end

end

d = Duck.new("huey",8,"cartoon")

puts d.name()



Defining getters

The attr reader method, does this for us.

attr reader is actually a method (!) defined in module
Module that generates these methods automatically

class Duck

def initialize(name,age,kind)

@name = name

@age = age

@kind = kind

end

attr_reader :name, :age

end

d = Duck.new("huey",8,"cartoon")

puts d.name()



Defining setters

We can define setters too, by creating a method "attr=" for
an attribute attr

class Duck

def initialize(name,age,kind)

@name = name; @age = age; @kind = kind

end

attr_reader :name, :age

def age=(new_age)

@age = new_age

end

end

d = Duck.new("huey",8,"cartoon")

d.age = 9



Defining setters

Or, we can use attr writer to generate the setters
automatically:

class Duck

def initialize(name,age,kind)

@name = name; @age = age; @kind = kind

end

attr_reader :name, :age

attr_writer :age

end

d = Duck.new("huey",8,"cartoon")

d.age = d.age + 1

d.age += 1

puts d



Class variables

Class variables start with @@. They should be initialized inside
the class.

class Duck < Bird

@@number = 0

def initialize(name,age,kind)

@name = namel @age = age; @kind = kind

@@number += 1

@number = @@number

end

attr_reader :name, :age

attr_writer :age

def to_s

super + ":#{@kind}[bird ##{@number}:of #{@@number}]"

end

end



Defining class methods

Class (static) methods are defined by prefixing the name with
the classname:

class Bird

@@flock = []

def initialize(name,age)

@name = name; @age = age

@@flock << self

end

def Bird.flock

return @@flock

end

end

Bird.new("huey",8); Bird.new("dewey",8); ...

puts Bird.flock



Access control

public, protected, private mean roughly the same as in
Java.

Of course, access control is dynamic — everything happens at
runtime. There are no errors until you try to execute a
method you don’t have access to.

class Bird

def roast; end

def steam; end

def fry; end

def deepfry; end

public :roast, :steam

protected :fry

private :deepfry

end



Freezing objects

You can freeze an object to prevent someone from modifying
it.

class Bird

def initialize(name,age)

@name = name; @age = age

end

attr_writer :age

end

h = Bird.new("huey",8)

h.age = 9

h.freeze

h.age = 10

puts h



Freezing classes

As we’ve seen, class definitions are executable code, they
essentially build the class at runtime, as they’re encountered.

So, since classes are objects, too, it makes sense that we can
freeze them:

Bird.freeze

class Bird

def newmethod

end

end



Exercise: Factorial

Write the factorial program in Ruby.

Note that there’s no need to put the function in a class.

Extend the program to take input from the command line, i.e.
if your file is called fact, you should be able to do

> fact 10

3628800

HINT: ARGV holds the input arguments, the method to i

converts from string to integer.



Exercise: Reading

Write a program which reads a string from the user and prints
true if its y or Y, false if it’s n or N or an empty line, and
loops otherwise. Ignore leading or trailing blanks. Examples:

> ./yes

Are you sure? [y/n]: y

true

> ./yes

Are you sure? [y/n]: n

false

> ./yes

Are you sure? [y/n]: asdfsdf

Are you sure? [y/n]: dsfsdfs

Are you sure? [y/n]:

false

HINT: gets() reads a string from the command line.



Exercise: Complex Class

Write a class Complex that implements complex numbers.
Given these statements

a = Complex.new(10,20)

puts a

b = a.add(Complex.new(5,6))

puts b

the program should print

> ruby Complex.rb

10+i20

15+i26

HINT: Use string interpolation in to s.



Exercise: Operator overloading

Extend Complex from the previous problem so that add can
be called using the + operator instead. Given these statements

a = Complex.new(10,20)

b = Complex.new(5,6)

c = a + b

puts c

the program should print

> ruby Complex.rb

15+i26

HINT: An operator is defined like this:

def * (a)

...

end



Exercise: Complex Arrays

Write a class ComplexArray to implement arrays of complex
numbers. Given these statements:

a = Complex.new(10,20)

b = Complex.new(5,6)

x1 = ComplexArray.new([a,b])

puts x1

the program should print

> ruby Complex.rb

[10+i20,5+i6]



Exercise: Polymorphic functions

Extend Complex by overriding the add method so that it now
can take both a Complex number and an integer as argument.
These statements

a = Complex.new(10,20)

puts a.add(Complex.new(5,6))

puts a.add(5)

puts a + 5

should produce

> ruby Complex.rb

15+i26

15+i20

15+i20

HINT: To do the type test you use: b.kind of?(Fixnum).



Readings

Read Chapter 3, page 25–41, in Programming Ruby — The

Pragmatic Programmers Guide, by Dave Thomas.

Read page 394–395, in Programming Ruby, about freezing
objects.



The three of us are twins!


