CSc 372

Comparative Programming Languages

28 : Ruby — Classes

Department of Computer Science
University of Arizona

Copyright (© 2011 Christian Collberg



collberg@gmail.com

Inheritance

@ Let's start with this class Bird, with two instance variables
name and age:

class Bird
def initialize(name,age)
OGname = name

Qage = age
end
def to_s

"#{Oname} : #{Qagel}"
end

end

puts Bird.new("donald",45)



Inheritance

@ We can can create a new class, Duck, as an extension of Bird:

class Duck < Bird
def initialize(name,age,kind)
Oname = name
Qage = age
@kind = kind
end
end
puts Duck.new("huey",8,"cartoon")



Overriding Methods

@ Now, the to_s doesn't print the new attribute kind — but we
can override it with a new definition.

@ Note that both to_s methods now exist, one in Bird and one
in Duck.

class Duck < Bird
def initialize(name,age,kind)
Oname = name

Qage = age
@kind = kind
end
def to_s

"#{Oname} : #{Qage} : #{Qkind}"
end
end



Overriding methods

@ We can call the method in the super class using the super
keyword — it sends the same message (with the same
arguments) to the parent class.

class Duck < Bird
def initialize(name,age,kind)
Oname = name

Qage = age

@kind = kind
end
def to_s

super + " : #{@kind}"
end

end



Defining getters

@ We can define getters by hand, like this:

class Duck
def initialize(name,age,kind)
Oname = name; Qage = age; Q@kind = kind
end
def name
Oname
end
def age
Qage
end
end
d = Duck.new("huey",8,"cartoon")
puts d.name()



Defining getters

@ The attr_reader method, does this for us.

@ attr_reader is actually a method (!) defined in module
Module that generates these methods automatically

class Duck
def initialize(name,age,kind)
Oname = name

Qage = age
@kind = kind
end
attr_reader :name, :age

end
d = Duck.new("huey",8,"cartoon")
puts d.name()



Defining setters

@ We can define setters too, by creating a method "attr=" for
an attribute attr

class Duck
def initialize(name,age,kind)
Oname = name; Qage = age; Qkind = kind
end
attr_reader :name, :age
def age=(new_age)
Qage = new_age
end
end
d = Duck.new("huey",8,"cartoon")

d.age = 9



Defining setters

@ Or, we can use attr_writer to generate the setters
automatically:

class Duck

def initialize(name,age,kind)
Oname = name; Qage = age; Qkind = kind

end
attr_reader :name, :age
attr_writer :age

end

d = Duck.new("huey",8,"cartoon")

d.age = d.age + 1

d.age += 1

puts d



Class variables

@ Class variables start with @@. They should be initialized inside
the class.

class Duck < Bird
Q@O@number = 0
def initialize(name,age,kind)
Oname = namel Qage = age; Qkind = kind
@O@number += 1
Onumber = QQ@number
end
attr_reader :name, :age
attr_writer :age
def to_s
super + ":#{Qkind}[bird ##{Onumber}:of #{Q@Cnumber}]"
end
end



Defining class methods

@ Class (static) methods are defined by prefixing the name with
the classname:

class Bird
@@flock = []
def initialize(name,age)
Oname = name; Qage = age
@@flock << self
end
def Bird.flock
return 0@0@flock
end
end
Bird.new("huey",8); Bird.new("dewey",8);
puts Bird.flock



Access control

@ public, protected, private mean roughly the same as in
Java.

@ Of course, access control is dynamic — everything happens at
runtime. There are no errors until you try to execute a
method you don't have access to.

class Bird
def roast; end
def steam; end
def fry; end
def deepfry; end
public :roast, :steam
protected :fry
private :deepfry

end



Freezing objects

@ You can freeze an object to prevent someone from modifying
it.

class Bird
def initialize(name,age)
Oname = name; Qage = age
end
attr_writer :age
end
h = Bird.new("huey",8)
h.age = 9
h.freeze
h.age = 10
puts h



Freezing classes

@ As we've seen, class definitions are executable code, they
essentially build the class at runtime, as they're encountered.

@ So, since classes are objects, too, it makes sense that we can
freeze them:

Bird.freeze

class Bird
def newmethod
end

end



Exercise: Factorial

@ Write the factorial program in Ruby.
@ Note that there's no need to put the function in a class.

@ Extend the program to take input from the command line, i.e.
if your file is called fact, you should be able to do

> fact 10
3628800

HINT: ARGV holds the input arguments, the method to_i
converts from string to integer.



Exercise: Reading

@ Write a program which reads a string from the user and prints
true if its y or Y, false if it's n or N or an empty line, and
loops otherwise. Ignore leading or trailing blanks. Examples:

> ./yes

Are you sure? [y/n]: y

true

> ./yes

Are you sure? [y/n]: n
false

> ./yes

Are you sure? [y/n]: asdfsdf
Are you sure? [y/n]: dsfsdfs

Are you sure? [y/n]:
false

HINT: gets() reads a string from the command line.



Exercise: Complex Class

@ Write a class Complex that implements complex numbers.
Given these statements

a = Complex.new(10,20)
puts a

b = a.add(Complex.new(5,6))
puts b

the program should print

> ruby Complex.rb
10+i20
15+i26

HINT: Use string interpolation in to_s.



Exercise: Operator overloading

@ Extend Complex from the previous problem so that add can
be called using the + operator instead. Given these statements

a = Complex.new(10,20)
b = Complex.new(5,6)
c=a+b

puts c

the program should print

> ruby Complex.rb
15+i26

HINT: An operator is defined like this:
def * (a)

end



Exercise: Complex Arrays

@ Write a class ComplexArray to implement arrays of complex
numbers. Given these statements:

a = Complex.new(10,20)

b = Complex.new(5,6)

x1 = ComplexArray.new([a,b])
puts x1

the program should print

> ruby Complex.rb
[10+120,5+1i6]



Exercise: Polymorphic functions

@ Extend Complex by overriding the add method so that it now

can take both a Complex number and an integer as argument.
These statements

a = Complex.new(10,20)

puts a.add(Complex.new(5,6))
puts a.add(5)

puts a + 5

should produce

> ruby Complex.rb
15+i26
15+i20
15+i20

HINT: To do the type test you use: b.kind_of? (Fixnum).



Readings

@ Read Chapter 3, page 2541, in Programming Ruby — The
Pragmatic Programmers Guide, by Dave Thomas.

@ Read page 394-395, in Programming Ruby, about freezing
objects.



The three of us are twins!




