
CSc 372

Comparative Programming Languages

3 : Haskell — Introduction

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Christian Collberg

collberg@gmail.com

What is Haskell?

Haskell is a functional programming language.

We study Haskell because, compared to other functional
languages

1 Haskell is statically typed (the signature of all functions and
the types of all variables are known prior to execution);

2 Haskell uses lazy rather than eager evaluation (expressions are
only evaluated when needed);

3 Haskell uses type inference to assign types to expressions,
freeing the programmer from having to give explicit types;

4 Haskell is pure (it has no side-effects).

What is Haskell?. . .

Haskell implementations are also interactive which means that
the user interface is like a calculator; you enter expressions,
the Haskell interpreter checks them, evaluates them, and
prints the result. This is called the “read-eval-print” loop:

Read PrintEval

> hugs

Prelude> (2*5)+3

13

What is Haskell?. . .

> hugs

Prelude> :load /usr/lib64/hugs/demos/Eliza.hs

Eliza> eliza

Hi! I’m Eliza. I am your personal therapy computer.

Please tell me your problem.

> hello

How do you...please state your problem.

> i’m bored!

Did you come to me because you are bored?

What is Haskell?. . .

eliza = interact (writeStr hi $ session initial [])

where hi = "\n\

\Hi! I’m Eliza. I am your personal\n\

\Please tell me your problem.\n\

\\n"

session rs prev

= readLine "> " (\l ->

let ws = words (trim l)

(response,rs’) = if prev==ws then

repeated rs else answer rs

in writeStr (response ++ "\n\n") $

session rs’ ws)

commaint – A Haskell Program

Real functional programs are, naturally, a bit more complex.
They make heavy use of

1 higher-order functions, functions which take functions as
arguments.

2 function composition, which is a way to combine simple
functions into more powerful ones.

3 function libraries, collections of functions that have proven
useful. The standard.prelude that you’ve seen that the
Haskell interpreter loads on start-up, is one such collection.

commaint – A Haskell Program. . .

So what does a “real” functional Haskell program look like?
Let’s have a quick look at one simple (?) function, commaint.

commaint works on strings, which are simply lists of
characters.

You are not supposed to understand this! Yet...

From the commaint documentation:

[commaint] takes a single string argument containing a
sequence of digits, and outputs the same sequence with
commas inserted after every group of three digits, · · ·

commaint – A Haskell Program. . .

Sample interaction:

? commaint "1234567"

1,234,567

commaint in Haskell:

commaint = reverse . foldr1 (\x y->x++","++y) .

group 3 . reverse

where group n = takeWhile (not.null) .

map (take n).iterate (drop n)

commaint – A Haskell Program. . .

reverse

r

o

u

p

3

iterate (drop 3)

map (take 3)

foldr1 (\x y−>x++","++y)

"765,432,1"

["765", "432", "1"]

takeWhile (not.null)

"7654321"

["7654321","4321","1","","", ...]

["765","432","1","","",...]

"1,234,567"

"1234567"
reverse

g

commaint – A Haskell Program. . .

commaint in Haskell:

commaint = reverse . foldr1 (\x y->x++","++y) .

group 3 . reverse

where group n = takeWhile (not.null) .

map (take n).iterate (drop n)

commaint in English:

“First reverse the input string. Take the resulting string
and separate into chunks of length 3. Then append the
chunks together, inserting a comma between chunks.
Reverse the resulting string.”

commaint – A Haskell Program. . .

commaint = reverse . foldr1 (\x y->x++","++y) .

group 3 . reverse

where group n = takeWhile (not.null) .

map (take n).iterate (drop n)

group n is a “local function.” It takes a string and an integer
as arguments. It divides the string up in chunks of length n.

reverse reverses the order of the characters in a string.

drop n xs returns the string that remains when the first n
characters of xs are removed.

commaint – A Haskell Program. . .

commaint = reverse . foldr1 (\x y->x++","++y) .

group 3 . reverse

where group n = takeWhile (not.null) .

map (take n).iterate (drop n)

iterate (drop 3) s returns the infinite (!) list of strings

[s, drop 3 s, drop 3 (drop 3 s),

drop 3 (drop 3 (drop 3 s)), · · ·]

take n s returns the first n characters of s.

commaint – A Haskell Program. . .

commaint = reverse . foldr1 (\x y->x++","++y) .

group 3 . reverse

where group n = takeWhile (not.null) .

map (take n).iterate (drop n)

map (take n) s takes a list of strings as input. It returns
another list of strings, where each string has been shortened
to n characters. (take n) is a function argument to map.

takeWhile (not.null) removes all empty strings from a list
of strings.

commaint – A Haskell Program. . .

commaint = reverse . foldr1 (\x y->x++","++y) .

group 3 . reverse

where group n = takeWhile (not.null) .

map (take n).iterate (drop n)

foldr1 (\x y->x++","++y) s takes a list of strings s as
input. It appends the strings together, inserting a comma
inbetween each pair of strings.

commaint – A Haskell Program. . .

Since Haskell is an interactive language, we can always try out
(parts of) functions that we don’t understand.

? reverse "1234567"

7654321

? take 3 "dasdasdasd"

das

? map (take 3) ["1234","23423","45324",""]

["123", "234", "453", []]

? iterate (drop 3) "7654321"

["7654321", "4321", "1", [], [], · · · {interrupt!}

hugs vs. ghci vs. . . .

There are several implementations of Haskell. They are mostly
the same, but differ in which libraries they support.

In these slides the examples use the hugs Haskell interpreter.

A better choice these days is the Haskell platform, which you
can download from here: http://hackage.haskell.org/platform.

The Haskell platform comes with the ghci Haskell interpreter.

http://hackage.haskell.org/platform

ghci modules

To get some of the examples in these slides to work you may
need to import some libraries that ghci needs but that hugs
loads automatically.

Here’s a list of ghci libraries:
http://www.haskell.org/ghc/docs/latest/html/libraries.

In particular, you may need these libraries:

Data.Char (for character operations such as toUpper)
Data.List (for list operations such as sort)

To load these libraries in your programs say

import Data.Char

import Data.List

To load these libraries interactively when running ghci, type

:m Data.Char Data.List

http://www.haskell.org/ghc/docs/latest/html/libraries

