
CSc 372

Comparative Programming Languages

30 : Ruby — Regular Expressions

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Christian Collberg

collberg@gmail.com

The String#scan method

str.scan(RE) iterates through the string str matching the
regular expression.

It can be called as a function, returning an array of results.

It can also be called with a block attached in which case the
block gets invoked for every match with the matched
substring as the argument.

d = "Duckburg, Calistona"

puts d.scan(/.../)

d.scan(/.../) do |x|

puts x

end

The String#match method

str.match(RE) returns the first substring of str that
matches, or nil if there’s no match.

puts d.match(/./)

puts d.match(/.$/)

puts d.match(/^[a-zA-z]*/)

puts d.match(/[a-zA-z]*$/)

The String#split method

str.split(RE) splits str wherever the regular expression
matches. The results are returned as an array.

d = "Duckburg, Calistona"

puts d.split(/ /)

puts d.split(/[,]/)

puts d.split(/[A-Z]/)

puts d.split(//)

puts "donald@duckburg.edu".split(/[@\.]/)

puts "donald@cs.duckburg.edu".split(/[@\.]/)

The String#sub/gsub methods

str.sub(RE,rep) returns a copy of str where the first
occurence of RE has been replaced with rep.

str.sub(RE) {|x| ...} instead passes a block to the
method, and the block returns what should be replaced.

gsub is similar but replaces all matches in the string.

sub! and gsub! perform the substitutions in-place.

puts "donald@cs.duckburg.edu".sub(

/duckburg/,"QuackU")

puts "donald@cs.duckburg.edu".sub(/[a-z]/) {

|x| x.upcase}

puts "donald@cs.duckburg.edu".gsub(/./) {

|x| x.upcase}

Grouping syntax

You can group parts of REs using parentheses. Whatever
matches the groups will be assigned to special variables
numbered 1,2,. . . .

Within the RE you can refer to these groups as \1, \2, . . .,
and outside as $1,$2,....

a = "donald@cs.duckburg.edu"

a =~ /([a-z]+)@([a-z\.]+)/

puts $1

puts $2

puts a.sub(/([a-z]+)@([a-z\.]+)/,

’username=\1,host=\2’)

puts "odandl".gsub(/(.)(.)/,’\2\1’)

Pattern Syntax: Anchors

^ matches the beginning of the line, $ the end of the line.

f = "One duck\nTwo duck\nRed duck\nBlue duck!"

puts f.gsub(/^[A-Za-z]+/,"Many")

puts f.gsub(/[A-Za-z]+$/,"fish")

Pattern Syntax: Character classes

[...] is a set of characters. It matches any character in the
set.

[^...] negates the character class. [^0-9], for example, is
the set of all characters except the digits.

There are some standard abbreviations:

\d ≡ [0-9]

\D ≡ [^0-9]

\s ≡ [\t\r\n\f]

\S ≡ [^ \t\r\n\f]

\w ≡ [A-Za-z0-9]

\W ≡ [^A-Za-z0-9]

Pattern Syntax: repetition

RE+ matches one or more of RE.

RE* matches zero or more of RE.

RE? matches zero or one of RE.

f = "DuckDuckDuckDuckFishDuck"

puts f.sub(/(Duck)+/,"NO MORE DUCKS!")

puts f.gsub(/(Duck)+/,"NO MORE DUCKS!")

puts f.gsub(/(Duck)*/,"NO MORE DUCKS!")

puts f.sub(/(Duck)?/,"NO MORE DUCKS!")

Pattern Syntax: repetition. . .

RE{m} matches exactly m RE.

RE{m, n} matches exactly m . . . n RE.

f = "DuckDuckDuckDuckFishDuck"

puts f.sub(/(Duck){2}/,"NO MORE DUCKS!")

puts f.sub(/(Duck){2,3}/,"NO MORE DUCKS!")

Pattern Syntax: Alternation

RE1|RE2 matches either RE.

f = "DuckDuckMonkeykDuckFishDuck"

puts f.gsub(/(Duck)|(Fish)/,"Banana")

Exercise

Write a function filepath(path) that parses a unix filename
(directory-names separated by slashes ending in a filename)
and returns them as an array:

puts filepath("aaa/bbb/ccc/ddd.txt")

puts filepath("a%$aa/b&*bb/c$@!cc/dd++d.txt")

should print

aaa

bbb

ccc

ddd.txt

a%$aa

b&*bb

c$@!cc

dd++d.txt

HINT: Use scan and character class inversion.

Exercise

Do the same as the previous exercise, but use split instead.

Exercise

Write a function BSOD(path) that turns a Unix filepath into a
Windows one, by replacing all forward slashes by backslashes:

puts BSOD("aaa/bbb/ccc/ddd.txt")

should print

aaa\bbb\ccc\ddd.txt

Exercise

Write a function protocol(url) that returns the protocol
part of a url. If no protocol is found, return "http". For
example, these calls

puts protocol("http://www.cs.arizona.edu")

puts protocol("https://www.cs.arizona.edu")

puts protocol("file://www.cs.arizona.edu")

puts protocol("www.cs.arizona.edu")

should print

http

https

file

http

HINT: Use the grouping syntax.

Exercise

Write a function parseURL(url) which splits a URL in three
pieces and returns them as an array: the protocol, the
address, and the file path. For example, this call

puts parseURL("http://www.cs.az.edu/~collberg/i.html")

puts parseURL("www.cs.az.edu/~collberg/i.html")

should print

http

www.cs.az.edu

/~collberg/i.html

nil

www.cs.az.edu

/~collberg/i.html

HINT: Use the grouping syntax and the ?-operator.

Exercise

Write a function parseHTML(htm) which takes a piece of
HTML such as hello! and returns the list
[tag,contents] if the HTML is valid (i.e., the tags match),
and nil otherwise. Examples:

puts parseHTML("hello there!")

puts parseHTML("hello there!</burp>")

should print

b

hello there!

nil

HINT: Use the grouping syntax and backslash sequences.

Exam Problem I(a) — 372 Fall 2008

Write a Ruby function which parses floating point numbers. It
should be defined like this:

def parse(f)

...

end

Here are some examples:

parse("+1.44E+10") ⇒ ["+1","44","+10"]

parse("1.44E10") ⇒ ["1","44","10"]

parse("+1.44") ⇒ ["+1","44",nil]

parse("+1.0") ⇒ ["+1","0",nil]

parse("1.0") ⇒ ["1","0",nil]

parse("1.") ⇒ nil

parse(".0") ⇒ nil

parse("a.0") ⇒ nil

parse("1.0E") ⇒ nil

Exam Problem I(a) — 372 Fall 2008

I.e., on success (the floating point number has the correct syntax)
parse returns an array of three strings: the part before the
decimal point, the part after the decimal point, and the exponent
part (if any). If there’s no exponent, that part is returned as nil.
If the syntax of the input is wrong, parse returns nil.
In particular, the syntax of a floating-point number conforms to
these rules:

1 There’s an optional + or - sign.

2 There’s at least one digit before the decimal point.

3 There’s at least one digit after the decimal point.

4 The exponent is optional, can start with E or e, can have an
optional + or - sign, and must have at least one digit.

Implement your function using one regular expression.

Exam Problem I(b) — 372 Fall 2008

Extend the parse function from the previous problem so that it
will either return its result as an array, or will yield the results, one
at a time, if called with a block. Here are some examples:

parse("+1.44E+10") do |x|

puts x

end

puts "------------"

parse("1.44") do |x|

puts x

end

puts "------------"

parse("monkey") do |x|

puts x

end

puts "------------"

which should produce this output:

+1

Exam Problem I(c) — 372 Fall 2008

Assume that we’ve defined a class Degree which represents a
degree someone might have. We’ll assume that there are only
three kinds of degrees, "BS", "MS", and "PHD". It’s possible to
compare two degrees to see which one is higher. To illustrate,
these statements

bs = Degree.new("BS")

ms = Degree.new("MS")

phd = Degree.new("PHD")

puts bs < ms

puts bs < phd

puts ms < phd

puts phd == phd

puts bs <= phd

puts phd > phd

puts phd <=> ms

puts phd.to_s()

Exam Problem I(c) — 372 Fall 2008

Write a Ruby class Degrees which encapsulates an array of the
degrees (instances of the Degree class above) that a person has.
The following operations should be supported:

1 You should be able to compare two persons’ sets of degrees to
see who is the better educated. A set of degrees A is
considered better than a set of degrees B if A’s highest degree
is higher than B ’s highest degree.

2 You should be able to perform standard collection operations
such as sort(), collect(), inject, member, and find, on
instances of Degrees.

Exam Problem I(c) — 372 Fall 2008

To illustrate the first point, consider these statements:

bob = Degrees.new([Degree.new("BS"),Degree.new("MS")])

alice = Degrees.new([Degree.new("BS"),Degree.new("PHD")])

charles = Degrees.new([Degree.new("PHD"),Degree.new("BS"),Degr

carol = Degrees.new([])

puts bob < alice

puts charles < alice

puts carol < bob

if charles == alice then

puts "Charles and Alice have the same highest degree"

end

if alice > bob then

puts "Alice is higher educated than Bob"

end

Exam Problem I(c) — 372 Fall 2008

They should produce this output:

true

false

true

Charles and Alice have the same highest degree

Alice is higher educated than Bob

Exam Problem I(c) — 372 Fall 2008

To illustrate the second point, consider these statements:

puts "Alice has these degrees: " + alice.inject() {|x,y| x.to_s+","+y.to_s}

puts "Charles has " + charles.inject(0) {|x,y| 1+x}.to_s + "

puts charles.collect() {|x| "Charles has a " + x.to_s}

if charles.member?(Degree.new("BS")) then

puts "Charles has a BS degree"

end

They should produce this output:

Alice has these degrees: BS,PHD

Charles has 3 degrees

Charles has a BS

Charles has a MS

Charles has a PHD

Charles has a BS degree

Readings

Read Chapter 2, page 19–20, in Programming Ruby.

Read Chapter 5, page 59–77, in Programming Ruby — The

Pragmatic Programmers Guide, by Dave Thomas.

The Ruby String-class, page 606-625 in Programming Ruby.

French Duckpress— $1559.99

A Duck Press is used to press out the juice, which is used as
seasoning over the meat slices.

Generally, the duck is cooked for around 20 minutes, the cooked
breast meat is sliced for serving, and the partially cooked legs are
finished cooking separately. The carcass is then pressed, together
with some good red wine, brandy, etc., and the resulting juices
poured over the slices. From http://www.fantes.com/duck_press.htm.

http://www.fantes.com/duck_press.htm

