
CSc 372

Comparative Programming Languages

4 : Haskell — Basics

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Christian Collberg

collberg@gmail.com

The Hugs Interpreter

The Haskell implementation we will be using is called Hugs .

You interact with Hugs by typing commands to the
interpreter , much like you would to a powerful calculator:

$ hugs

> 6 * 7

42

> 126 ‘div‘ 3

4

The Hugs Interpreter. . .

Haskell programs (known as scripts) are just text files with
function definitions that can be loaded into the interpreter
using the :load script command:

$ hugs

> :load file.hs

Haskell scripts take the file extension .hs.

Haskell Types

Expressions

When we “run” a Haskell program, we actually
evaluate an expression , and the result of the program is the
value of that expression.

Unlike Java programs. Haskell programs have no statements
— there is no way to assign a new value to a variable for
example.

Haskell Types

Haskell is strongly typed . This means that every expression
has exactly one type.

Haskell is statically typed . This means that the type of an
expression can be figured out before we run the program.

The basic types in Haskell include
1 Int (word-sized integers)
2 Integer (arbitrary precision integers)
3 Float (Floating point numbers)
4 Tuples and Lists
5 Strings (really just lists)
6 Function types

Type inference

In Java and most other languages the programmer has to
declare what type variables, functions, etc have.

We can do this too, in Haskell:

> 6*7 :: Int

42

:: Int asserts that the expression 6*7 has the type Int.

Haskell will check for us that we get our types right:

> 6*7 :: Bool

ERROR

Type inference. . .

We can let the Haskell interpreter infer the type of
expressions, called type inference .

The command :type expression asks Haskell to print the
type of an expression:

> :type "hello"

"hello" :: String

> :type True && False

True && False :: Bool

> :type True && False :: Bool

True && False :: Bool

Simple Types

Int

The Int type is a 32-bit signed integer, similar to Java’s int
type:

Prelude> (3333333 :: Int) * (44444444444444 :: Int)

Program error: arithmetic overflow

Some Haskell versions may instead overflow the integer
(yielding a negative number).

Int — Operators

The normal set of arithmetic operators are available:

Op Precedence Associativity Description

^ 8 right Exponentiation
*, / 7 left Mul, Div
‘div‘ 7 free Division
‘rem‘ 7 free Remainder
‘mod‘ 7 free Modulus
+, - 6 left Add, Subtract
==,/= 4 free (In-) Equality

<,<=,>,>= 4 free Relational Com-
parison

Int. . .

Note that the div operator has to be in backquotes when
used as an infix operator:

> 4*12-6

42

> 126 ‘div‘ 3

42

> div 126 3

42

Int. . .

The standard precedence and associativity rules apply:

1+2-3 ⇒ (1+2)-3

1+2*3 ⇒ 1+(2*3)

2^3^4 ⇒ 2^(3^4)

4==5==6 ⇒ ERROR

12/6/3 ⇒ 0.666666666666667

12/(6/3) ⇒ 6.0

Integer

Haskell also has an infinte precision integer type, similar to
Java’s java.math.BigInteger class:

> (3333333 :: Integer) * (44444444444444 :: Integer)

148148133333331851852

Integers are the default integer type:

> 2^64

18446744073709551616

Integer. . .

Ints and Integers aren’t compatible:

> (3333333 :: Integer) * (44 :: Int)

ERROR - Type error in application

but we can convert from an Int to an Integer:

> (toInteger (55 :: Int)) * (66 :: Integer)

3630

Float and Double

Haskell also has built-in floating point numbers Float and
Double:

> sqrt 2 :: Float

1.414214

> sqrt 2 :: Double

1.4142135623731

sqrt is a built-in library function.

Double is the default:
> sqrt 2

1.4142135623731

Char

Literals: ’a’, ’b’. Special characters: ’\n’ (newline).

ASCII: ’\65’ (decimal), ’\x41’ (hex).

There are standard functions on characters (toUpper,
isAlpha, etc) defined in the a separate module Char:

> :load Char

> toUpper ’A’

’A’

> toUpper ’a’

’A’

> ord ’a’

97

Char — Built-in Functions

ord :: Char -> Int

chr :: Int -> Char

toUpper, toLower :: Char -> Char

isAscii,isDigit,· · · :: Char -> Bool

isUpper,isLower,· · · :: Char -> Bool

ord ’a’ ⇒ 97 toUpper ’a’ ⇒ ’A’

chr 65 ⇒ ’A’ isDigit ’a’ ⇒ False

String

Strings are really lists of characters.

> "hello"

"hello"

> :type "hello"

"hello" :: String

> "hello" :: String

"hello"

> length "hello"

5

> "hello" ++ " world!"

"hello world!"

++ does string/list concatenation.

Bool

There are two boolean literals, True and False

Op Precedence Associativity Description

&& 3 right logical and
|| 2 right logical or
not 9 – logical not

3 < 5 && 4 > 2 ⇔ (3 < 5) && (4 > 2)

True || False && True ⇔ True || (False && True)

Haskell Functions

Functions

Here’s the ubiquitous factorial function:

fact :: Int -> Int

fact n = if n == 0 then

1

else

n * fact (n-1)

The first part of a function definition is the type signature,
which gives the domain and range of the function:

fact :: Int -> Int

The second part of the definition is the function declaration,
the implementation of the function:

fact n = if n == 0 then · · ·

Functions. . .

The syntax of a type signature is

fun name :: arg types

fact takes one integer input argument and returns one
integer result.

The syntax of function declarations:

fun name param names = fun body

fact is defined recursively, i.e. the function body contains an
application of the function itself.

Function application examples:

fact 1 ⇒ 1

fact 5 ⇒ 120

fact (3+2) ⇒ 120

List and Tuple Types

Lists

A list in Haskell consists of a sequence of elements, all of the
same type:

> [1,2,3]

[1,2,3]

> [True,False] :: [Bool]

[True,False]

> :type [True,False]

[True,False] :: [Bool]

> :type [[’A’,’B’],[’C’,’D’],[]]

[[’A’,’B’],[’C’,’D’],[]] :: [[Char]]

> [1,True]

ERROR

> length [1,2,3]

3

Tuples

A Haskell tuple is similar to a record/struct in C – it is a
collection of objects of (a limited number of) objects, possibly
of different types. Each C struct elements has a unique name,
whereas in Haskell you distinguish between elements by their
position in the tuple.

Syntax: (t1, t2, · · · , tn).

Examples:

type Complex = (Float,Float)

mkComplex :: Float -> Float -> Complex

mkComplex re im = (re, im)

Tuples. . .

type Complex = (Float,Float)

mkComplex :: Float -> Float -> Complex

mkComplex re im = (re, im)

mkComplex 5 3 ⇒ (5, 3)

addComplex :: Complex -> Complex -> Complex

addComplex (a,b) (c,d) = (a+c,b+d)

addComplex (mkComplex 5 3) (mkComplex 4 2) ⇒ (9,5)

Haskell Scripts

Editing and Loading Scripts

:load name (or :l name) loads a new Haskell program.

:reload (or :r) reloads the current script.

:edit name (or :e name) edits a script. On Unix you can set
the EDITOR environment variable to control which editor to
use:

setenv EDITOR emacs

:? shows all available commands.

:quit quits Hugs.

The Offside Rule

When does one function definition end and the next one
begin?

square x = x * x

+2

cube x = · · ·

Textual layout determines when definitions begin and end.

The Offside Rule. . .

The first character after the "=" opens up a box which holds
the right hand side of the equation:

square x = x * x
+2

Any character to the left of the line closes the box and starts
a new definition:

square x = x * x
+2

cube x = ...

Comments

Line comments start with -- and go to the end of the line:

-- This is a comment.

Nested comments start with {- and end with -}:

{-
This is a comment.

{-
And here’s another one....

-}
-}

Editing Scripts

Emacs

On Unix, emacs is the editor of choice.

Depending on your system, it may be called emacs or xemacs.

For a list of common commands, see the links below.

Readings and References

In addition to our textbook, chapters 1-3 of Programming in

Haskell, by Graham Hutton, is a good introduction to Haskell:
http://www.cs.nott.ac.uk/~gmh/book.html

Emacs Guide: http://www.cs.arizona.edu/classes/cs372/fall03/04.html

Emacs Reference Card:
http://www.cs.arizona.edu/classes/cs372/fall03/emacs.html

http://www.cs.nott.ac.uk/~gmh/book.html
http://www.cs.arizona.edu/classes/cs372/fall03/04.html
http://www.cs.arizona.edu/classes/cs372/fall03/emacs.html

Summary

Haskell has all the basic types one might expect: Ints, Chars,
Floats, and Bools.

Haskell functions come in two parts, the signature and the
declaration:

fun name :: argument types

fun name param names = fun body

Many Haskell functions will use recursion.

Haskell doesn’t have assignment statements, loop statements,
or procedures.

Haskell tuples are similar to records in other languages.

Homework

1 Start Hugs.

2 Enter the commaint function and try it out.

3 Enter the addComplex and mkComplex functions and try
them out.

4 Try the standard functions fst x and snd x on complex
values. What do fst and snd do?

5 Try out the Eliza application in /usr/local/hugs98/lib/hugs/demos/Eliza.hs

on lectura.

/usr/local/hugs98/lib/hugs/demos/Eliza.hs

Homework. . .

Write a Haskell function to check if a character is
alphanumeric, i.e. a lower case letter, upper case letter, or
digit.

? isAlphaNum ’a’

True

? isAlphaNum ’1’

True

? isAlphaNum ’A’

True

? isAlphaNum ’;’

False

? isAlphaNum ’@’

False

Homework. . .

Define a Haskell exclusive-or function.

eOr :: Bool -> Bool -> Bool

eOr x y = · · ·

? eOr True True

False

? eOr True False

True

? eOr False True

True

? eOr False False

False

Homework. . .

Define a Haskell function charToInt which converts a digit
like ’8’ to its integer value 8. The value of non-digits should
be taken to be 0.

charToInt :: Char -> Int

charToInt c = · · ·

? charToInt ’8’

8

? charToInt ’0’

0

? charToInt ’y’

0

