
CSc 372

Comparative Programming Languages

5 : Haskell — Function Definitions

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Christian Collberg

collberg@gmail.com

Defining Functions

When programming in a functional language we have basically
two techniques to choose from when defining a new function:

1 Recursion
2 Composition

Recursion is often used for basic “low-level” functions, such
that might be defined in a function library.

Composition (which we will cover later) is used to combine
such basic functions into more powerful ones.

Recursion is closely related to proof by induction.

Defining Functions. . .

Here’s the ubiquitous factorial function:

fact :: Int -> Int

fact n = if n == 0 then

1

else

n * fact (n-1)

The first part of a function definition is the type signature,
which gives the domain and range of the function:

fact :: Int -> Int

The second part of the definition is the function declaration,
the implementation of the function:

fact n = if n == 0 then · · ·

Defining Functions. . .

The syntax of a type signature is

fun name :: argument types

fact takes one integer input argument and returns one
integer result.

The syntax of function declarations:

fun name param names = fun body

Conditional Expressions

if e1 then e2 else e3 is a conditional expression that
returns the value of e2 if e1 evaluates to True. If e1 evaluates
to False, then the value of e3 is returned. Examples:

if True then 5 else 6 ⇒ 5

if False then 5 else 6 ⇒ 6

if 1==2 then 5 else 6 ⇒ 6

5 + if 1==1 then 3 else 2 ⇒ 8

Note that this is different from Java’s or C’s if-statement , but
just like their ternary operator ?::

int max = (x>y)?x:y;

Conditional Expressions. . .

Example:

abs :: Int -> Int

abs n = if n>0 then n else -n

sign :: Int -> Int

sign n = if n<0 then -1 else

if n==0 then 0 else 1

Unlike in C and Java, you can’t leave off the else-part!

Guarded Equations

An alternative way to define conditional execution is to use
guards:

abs :: Int -> Int

abs n | n>= 0 = n

| otherwise = -n

sign :: Int -> Int

sign n| n<0 = -1

| n==0 = 0

| otherwise = 1

The pipe symbol is read such that.

otherwise is defined to be True.

Guards are often easier to read — it’s also easier to verify that
you have covered all cases.

Defining Functions. . .

fact is defined recursively, i.e. the function body contains an
application of the function itself.

The syntax of function application is: fun name arg. This
syntax is known as “juxtaposition”.

We will discuss multi-argument functions later. For now, this
is what a multi-argument function application (“call”) looks
like:

fun name arg 1 arg 2 · · · arg n

Function application examples:

fact 1 ⇒ 1

fact 5 ⇒ 120

fact (3+2) ⇒ 120

Multi-Argument Functions

A simple way (but usually not the right way) of defining an
multi-argument function is to use tuples:

add :: (Int,Int) -> Int

add (x,y) = x+y

> add (40,2)

42

Later, we’ll learn about Curried Functions .

The error Function

error string can be used to generate an error message and
terminate a computation.

This is similar to Java’s exception mechanism, but a lot less
advanced.

f :: Int -> Int

f n = if n<0 then

error "illegal argument"

else if n <= 1 then

1

else

n * f (n-1)

> f (-1)

Program error: illegal argument

Layout

A function definition is finished by the first line not indented
more than the start of the definition

myfunc :: Int -> Int

myfunc x = if x == 0 then

0 else 99

myfunc :: Int -> Int

myfunc x = if x == 0 then

0 else 99

myfunc :: Int -> Int

myfunc x = if x == 0 then

0 else 99

The last two generate a Syntax error in expression

when the function is loaded.

Function Application

Function application (“calling a function with a particular
argument”) has higher priority than any other operator.

In math (and Java) we use parentheses to include arguments;
in Haskell no parentheses are needed.

> f a + b

means

> (f a) + b

since function application binds harder than plus.

Function Application. . .

Here’s a comparison between mathematical notations and
Haskell:

Math Haskell

f (x) f x

f (x , y) f x y

f (g(x)) f (g x)

f (x , g(y)) f x (g y)

f (x)g(y) f x * g y

Recursive Functions

Simple Recursive Functions

Typically, a recursive function definition consists of a guard (a
boolean expression), a base case (evaluated when the guard is
True), and a general case (evaluated when the guard is False).

fact n =

if n == 0 then ⇐ guard

1 ⇐ base case

else

n * fact (n-1) ⇐ general case

Simulating Recursive Functions

We can visualize the evaluation of fact 3 using a tree view,
box view, or reduction view.

The tree and box views emphasize the flow-of-control from
one level of recursion to the next

The reduction view emphasizes the substitution steps that the
hugs interpreter goes through when evaluating a function. In
our notation boxed subexpressions are substituted or
evaluated in the next reduction.

Note that the Haskell interpreter may not go through exactly
the same steps as shown in our simulations. More about this
later.

Tree View of fact 3

fact 3

else 2 * fact (2−1)

if 1==0 then 1
else 1 * fact (1−1)

if 0==0 then 1
else ...

if 3==0 then 1
else 3 * fact (3−1)

fact 2

fact 1

fact 0

if 2==0 then 1

This is a Tree View of
fact 3.

We keep going deeper
into the recursion
(evaluating the general
case) until the guard is
evaluated to True.

Tree View of fact 3

fact 3

else 2 * fact (2−1)

if 1==0 then 1
else 1 * fact (1−1)

if 0==0 then 1
else ...

if 3==0 then 1
else 3 * fact (3−1)

fact 2

fact 1

fact 0
1

3*2=6

2*1=2

1*1=1

if 2==0 then 1

When the guard is True
we evaluate the base case
and return back up
through the layers of
recursion.

Box View of fact 3

*

3

fact 3

False

2

fact 2

if

then

else

==

1

0

−

1

Box View of fact 3. . .

3

False

1

fact 1

if

then

else

==

1

0

−

1

*

fact 3

False

2

==

1

0

−

if

then

else

1

*

fact 2

Box View of fact 3. . .

3

fact 3

False

2

==

1

0

−

if

then

else

1

*

fact 2
False

1

fact 1

if

then

else

==

1

0

−

1

*

−

Reduction View of fact 3

fact 3 ⇒

if 3 == 0 then 1 else 3 * fact (3-1) ⇒

if False then 1 else 3 * fact (3-1) ⇒

3 * fact (3-1) ⇒

3 * fact 2 ⇒

3 * if 2 == 0 then 1 else 2 * fact (2-1)⇒

3 * if False then 1 else 2 * fact (2-1) ⇒

3 * (2 * fact (2-1)) ⇒

3 * (2 * fact 1) ⇒

3 * (2 * if 1 == 0 then 1 else 1 * fact (1-1))

⇒ · · ·

Reduction View of fact 3. . .

3 * (2 * if 1 == 0 then 1 else 1 * fact (1-1)) ⇒

3 * (2 * if False then 1 else 1 * fact (1-1)) ⇒

3 * (2 * (1 * fact (1-1))) ⇒

3 * (2 * (1 * fact 0)) ⇒

3 * (2 * (1 * if 0 == 0 then 1 else 0 * fact (0-1))) ⇒

3 * (2 * (1 * if True then 1 else 0 * fact (0-1))) ⇒

3 * (2 * (1 * 1)) ⇒

3 * (2 * 1) ⇒

3 * 2 ⇒

6

Recursion Over Lists

In the fact function the guard was n==0, and the recursive
step was fact(n-1). I.e. we subtracted 1 from fact’s
argument to make a simpler (smaller) recursive case.

We can do something similar to recurse over a list:
1 The guard will often be n==[] (other tests are of course

possible).
2 To get a smaller list to recurse over, we often split the list into

its head and tail, head:tail.
3 The recursive function application will often be on the tail, f

tail.

The length Function

In English:

The length of the empty list [] is zero. The length of a

non-empty list S is one plus the length of the tail of S.

In Haskell:

len :: [Int] -> Int

len s = if s == [] then

0

else

1 + len (tail s)

We first check if we’ve reached the end of the list s==[].
Otherwise we compute the length of the tail of s, and add one
to get the length of s itself.

Reduction View of len [5,6]

len s = if s == [] then 0 else 1 + len (tail s)

len [5,6] ⇒

if [5,6]==[] then 0 else 1 + len (tail [5,6]) ⇒

1 + len (tail [5,6]) ⇒

1 + len [6] ⇒

1 + (if [6]==[] then 0 else 1 + len (tail [6])) ⇒

1 + (1 + len (tail [6])) ⇒

1 + (1 + len []) ⇒

1 + (1 + (if []==[] then 0 else 1+len (tail []))) ⇒

1 + (1 + 0)) ⇒ 1 + 1 ⇒ 2

Tree View of len [5,6,7]

else 1 + len (tail [5,6,7])

len [6,7]

len [7]

len []

1+2=3

1+0=1

len [5,6,7]

if [5,6,7]==[] then 0

if [6,7]==[] then 0

if [7]==[] then 0

if []==[] then 0
else ...

1+1=2

0

else 1 + len (tail [6,7])

else 1 + len (tail [7])

len :: [Int] -> Int

len s = if s==[] then 0

else 1+len(tail s)

Tree View of len
[5,6,7]

