
CSc 372

Comparative Programming Languages

6 : Haskell — Lists

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Christian Collberg

collberg@gmail.com

The List Datatype

All functional programming languages have the ConsList
ADT built-in. It is called so because lists are constructed by
“consing” (adding) an element on to the beginning of the list.

Lists are defined recursively:
1 The empty list [] is a list.
2 An element x followed by a list L (x:L), is a list.

Examples:

[]

2:[]

3:(2:[])

4:(3:(2:[]))

The List Datatype. . .

The cons operator ":" is right associative (it binds to the
right, i.e.

1:2:[] ≡ 1:(2:[])

so

3:(2:[])

can be written without brackets as

3:2:[]

The List Datatype. . .

Lists can also be written in a convenient bracket notation.

2:[] ⇒ [2]

3:(2:[]) ⇒ [3,2]

4:(3:(2:[]) ⇒ [4,3,2]

You can make lists-of-lists ([[1],[5]]), lists-of-lists-of-lists
([[[1,2]],[[3]]]), etc.

The List Datatype. . .

More cons examples:

1:[2,3] ⇒ [1,2,3]

[1]:[[2],[3]] ⇒ [[1],[2],[3]]

Note that the elements of a list must be of the same type!

[1,[1],1] ⇒ Illegal!

[[1],[2],[[3]]]⇒ Illegal!

[1,True] ⇒ Illegal!

Internal Representation

Internally, Haskell lists are represented as linked cons-cells .

A cons-cell is like a C struct with two pointer fields head
and tail.

The head field points to the first element of the list, the tail

field to the rest of the list.

The :-operator creates a new cons-cell (using malloc) and
fills in the head and tail fields to point to the first element
of the new list, and the rest of the list, respectively.

Internal Representation — Example

[]3

1 : [2,3]

[]

[2,3] 1:2:3:[] [1,2,3]

TailHead

2

3

1

2

2:3:[] oror

Standard Operations on Lists

head and tail

The Standard Prelude has many built-in operations on lists.

Two principal operators are used to take lists apart:
1 head L – returns the first element of L.
2 tail L – returns L without the first element.

The cons operator ":" is closely related to head and tail:
1 head (x:xs) ≡ x
2 tail (x:xs) ≡ xs

The cons operator ":" constructs new lists, head and tail

take them apart.

head and tail. . .

head [1,2,3] ⇒ 1

tail [1,2,3] ⇒ [2,3]

tail [1] ⇒ [] ([1] == 1:[])

head [] ⇒ ERROR

tail [] ⇒ ERROR

head (1:[2,3]) ⇒ 1

tail (1:[2,3]) ⇒ [2,3]

head (tail [1,2,3])⇒ 2

head (tail [[1],[2],[3,3]])⇒ [2]

length and ++

length xs – Number of elements in the list xs.

xs ++ ys – The elements of xs followed by the elements of
ys.

Examples:

length [1,2,3] ⇒ 3

length [] ⇒ 0

[1,2] ++ [3,4] ⇒ [1,2,3,4]

[1,2] ++ [] ⇒ [1,2]

[1] ++ [2,3] ++ [4] ⇒ [1,2,3,4]

length ([1]++[2,3]) ⇒ 3

[1] ++ [length [2,3]]⇒ [1,2]

concat

concat xss – all of the lists in xss appended together.

concat [[1],[4,5],[6]] ⇒ [1,4,5,6]

Note that concat takes a list of lists as argument.

map

map f xs – list of values obtained by applying the function f

to the values in xs.

map even [1,2,3] ⇒ [False,True,False]

map square [1,2,3] ⇒ [1,4,9]

Note that map takes a function as its first argument. A
function which takes a function as an argument or delivers
one as its result, is called a higher-order function .

We will talk more about higher-order functions in future
lectures.

More list operation examples

head ([1,2] ++ [3,4]) ⇒

head [1,2,3,4] ⇒ 1

tail (concat [[1],[3,4],[5]]) ⇒

tail [1,3,4,5] ⇒ [3,4,5]

tail (map double (concat [[1],[3],[4]])) ⇒

tail (map double [1,3,4]) ⇒

tail [2,6,8] ⇒ [6,8]

The String Type

A Haskell string is a list of characters:

type String = [Char]

All list manipulation functions can be applied to strings.

Note that "" == [].

"Chris" ⇔ [’C’,’h’,’r’,’i’,’s’]

head "Chris" ⇔ ’C’

tail "Chris" ⇔ [’h’,’r’,’i’,’s’]

"Chris" ++ "tian" ⇔

[’C’,’h’,’r’,’i’,’s’,’t’,’i’,’a’,’n’]

map ord "Hello" ⇔

[72,101,108,108,111]

concat ["Have ","a ","cow, ","man!"]

⇔ "Have a cow, man!"

Recursion Over Lists

Recursion on the Tail

Compute the length of a list.

This is called recursion on the tail .

len :: [Int] -> Int

len xs = if xs == [] then

0

else

1 + len (tail xs)

Variable Naming Conventions

When we write functions over lists it’s convenient to use a
consistent variable naming convention. We let

x, y, z, · · · denote list elements.
xs, ys, zs, · · · denote lists of elements.
xss, yss, zss, · · · denote lists of lists of elements.

Map Function

Map a list of numbers to a new list of their absolute values.

In the previous examples we returned an Int — here we’re
mapping a list to a new list.

This is called a map function .

abslist :: [Int] -> [Int]

abslist xs = if xs == [] then

[]

else

abs (head xs) : abslist (tail xs)

Map Function. . .

> abslist []

[]

> abslist [1]

[1]

abslist [1,-2]

[1,2]

Recursion Over Two Lists

listeq xs ys returns True if two lists are equal.

listeq :: [Int] -> [Int] -> Bool

listeq xs ys = if xs==[] && ys==[] then

True

else if xs==[] || ys==[] then

False

else if head xs /= head ys then

False

else

listeq (tail xs) (tail ys)

Recursion Over Two Lists. . .

> listeq [1] [2]

False

> listeq [1] [1]

True

> listeq [1] [1,2]

False

> listeq [1,2] [1,2]

True

Append

append xs ys takes two lists as arguments and returns a
new list, consisting of the elements of xs followed by the
elements of ys.

To do this recursively, we take xs apart on the way down into
the recursion, and “attach” them to ys on the way up:

append :: [Int] -> [Int] -> [Int]

append xs ys = if xs==[] then

ys

else

(head xs) : (append (tail xs) ys)

Append. . .

> append [] []

[]

> append [1] []

[1]

> append [1] [2]

[1,2]

> append [1,2,3] [4,5,6]

[1,2,3,4,5,6]

Arithmetic Sequences

Arithmetic Sequences

Haskell provides a convenient notation for lists of numbers
where the difference between consecutive numbers is
constant.

[1..3] ⇒ [1,2,3]

[5..1] ⇒ []

A similar notation is used when the difference between
consecutive elements is 6= 1: Examples:

[1,3..9] ⇒ [1,3,5,7,9]

[9,8..5] ⇒ [9,8,7,6,5]

[9,8..11] ⇒ []

Or, in general:

[m,k..n] ⇒

[m,m+(k-m)*1,m+(k-m)*2,· · ·,n]

Arithmetic Sequences. . .

Or, in English

“m and k are the first two elements of the sequence.

All consecutive pairs of elements have the same

difference as m and k. No element is greater than n.”

Or, in some other words,

“m and k form a prototype for consecutive element

pairs in the list.”

Later in the course we will talk about infinite lists . Haskell
has the capability to create infinite arithmetic sequences:

[3..] ⇒ [3,4,5,6,7,· · ·]

[4,3..] ⇒ [4,3,2,1,0,-1,-2,· · ·]

Summary

The bracketed list notation [1,2,3] is just an abbreviation
for the list constructor notation 1:2:3:[].

Lists can contain anything: integers, characters, tuples, other
lists, but every list must contain elements of the same type
only.

:, ++, concat, and list comprehensions create lists.

head and tail take lists apart.

Summary. . .

The notation [m..n] generates lists of integers from m to n.

If the difference between consecutive integers is 6= 1, we use
the slightly different notation [m,k..n]. The first two
elements of the generated list are m and k. The remaining
elements are as far apart as m and k.

Homework

Which of the following are legal list constructions? First work
out the answer in your head, then try it out with the hugs

interpreter.

1 1 : []

2 1 : [] : []

3 1 : [1]

4 [] : [1]

5 [1] : [1] : []

Homework

Show the lists generated by the following Haskell list
expressions.

1 [7..11]

2 [11..7]

3 [3,6..12]

4 [12,9..2]

Homework

1 Write a function getelmt xs n which returns the n:th
element of a list of integers.

2 Write a function evenelmts xs which returns a new list
consisting of the 0:th, 2:nd, 4:th, . . . elements of an integer
list xs.

Homework

For each of the function signatures on the next slide, describe
in words what type of function they represent. For example,
for f1 you’d say “this is a function which takes one Int
argument and returns and Int result.”

Also, for each signature, give an example of a function that
would have this signature. For example, “f1 could be the abs

function which takes an Int as argument and returns its
absolute value.”

Homework. . .

1 f1 :: Int -> Int

2 f2 :: Int -> Bool

3 f3 :: (Int,Int)->Int

4 f4 :: [Int] -> Int

5 f5 :: [Int] -> Bool

6 f6 :: [Int]->Int->Bool

7 f7 :: [Int]->[Int]->[Int]

8 f8 :: [[Int]]->[Int]

9 f9 :: [Int]->[Int]

10 f10 :: [Int]->[Bool]

