CSc 372

Comparative Programming Languages

10: Haskell - Curried Functions
Department of Computer Science University of Arizona

Infix Functions

Declaring Infix Functions

- Sometimes it is more natural to use an infix notation for a function application, rather than the normal prefix one:
- $5+6$ (infix)
- (+) 56 (prefix)
- Haskell predeclares some infix operators in the standard prelude, such as those for arithmetic.
- For each operator we need to specify its precedence and associativity. The higher precedence of an operator, the stronger it binds (attracts) its arguments: hence:
$3+5 * 4 \equiv 3+(5 * 4)$
$3+5 * 4 \not \equiv(3+5) * 4$

Declaring Infix Functions. . .

- The associativity of an operator describes how it binds when combined with operators of equal precedence. So, is

$$
\begin{array}{ll}
5-3+9 & \equiv(5-3)+9=11 \\
& \text { OR } \\
5-3+9 & \equiv 5-(3+9)=-7
\end{array}
$$

The answer is that + and - associate to the left, i.e. parentheses are inserted from the left.

- Some operators are right associative: $5^{\wedge} 3^{\wedge} 2 \equiv 5^{\wedge}\left(3^{\wedge} 2\right)$
- Some operators have free (or no) associativity. Combining operators with free associativity is an error:
$5=4<3 \quad \Rightarrow$ ERROR

Declaring Infix Functions. . .

- The syntax for declaring operators:

```
infixr prec oper -- right assoc.
infixl prec oper -- left assoc.
infix prec oper -- free assoc.
```

From the standard prelude: \qquad
infixl 7*
infix 7 /, 'div', 'rem', 'mod'
infix 4 ==, /=, <, <=, >=, >

- An infix function can be used in a prefix function application, by including it in parenthesis. Example:
$?(+) 5((*) 64)$
29

Multi-Argument Functions

Multi-Argument Functions

- Haskell only supports one-argument functions.
- An n-argument function $f\left(a_{1}, \cdots, a_{n}\right)$ is constructed in either of two ways:
(1) By making the one input argument to f a tuple holding the n arguments.
(2) By letting f "consume" one argument at a time. This is called currying.

Tuple	Currying
add $:: \quad$ (Int, Int)->Int	add $:: \quad$ Int->Int-> Int
add $(\mathrm{a}, \mathrm{b})=\mathrm{a}+\mathrm{b}$	add $\mathrm{a} \mathrm{b}=\mathrm{a}+\mathrm{b}$

Currying

- Currying is the preferred way of constructing multi-argument functions.
- The main advantage of currying is that it allows us to define specialized versions of an existing function.
- A function is specialized by supplying values for one or more (but not all) of its arguments.
- Let's look at Haskell's plus operator (+). It has the type
(+) :: Int -> (Int -> Int).
- If we give two arguments to (+) it will return an Int:

$$
\text { (+) } 53 \Rightarrow 8
$$

Currying. .

- If we just give one argument (5) to (+) it will instead return a function which "adds 5 to things". The type of this specialized version of (+) is Int -> Int.
- Internally, Haskell constructs an intermediate - specialized function:
add5 :: Int -> Int
add5 a = 5 + a
- Hence, (+) 53 is evaluated in two steps. First (+) 5 is evaluated. It returns a function which adds 5 to its argument. We apply the second argument 3 to this new function, and the result 8 is returned.

Currying. .

- To summarize, Haskell only supports one-argument functions. Multi-argument functions are constructed by successive application of arguments, one at a time.
- Currying is named after logician Haskell B. Curry (1900-1982) who popularized it. It was invented by Schönfinkel in 1924. Schönfinkeling doesn't sound too good...
- Note: Function application ($\mathrm{f} x$) has higher precedence (10) than any other operator. Example:

```
f 5 + 1 \Leftrightarrow (f 5) + 1
f 5 6 < (f 5) 6
```


Currying Example

- Let's see what happens when we evaluate f 345 , where f is a 3 -argument function that returns the sum of its arguments.

```
f :: Int -> (Int -> (Int -> Int))
f x y z = x + y + z
f 3 4 5 \equiv((f 3) 4) 5
```


Currying Example. . .

- (f 3) returns a function f^{\prime} y $z(f$ ' is a specialization of f) that adds 3 to its next two arguments.

$$
\begin{aligned}
& f 345 \equiv((f 3) 4) 5 \Rightarrow(f, 4) 5 \\
& f,:: \text { Int }->(\text { Int }->\text { Int }) \\
& f^{\prime} y z=3+y+z
\end{aligned}
$$

Currying Example...

- (f, 4) (三 (f 3) 4) returns a function f ' $z(f$ ') is a specialization of f ') that adds (3+4) to its argument.

$$
\begin{aligned}
\text { f } 345 & \equiv((f \text { 3) } 4) 5 \Rightarrow(f, 4) 5 \\
& \Rightarrow f,{ }^{\prime} 5
\end{aligned}
$$

f,' :: Int -> Int
f', $z=3+4+z$

- Finally, we can apply f' ' to the last argument (5) and get the result:

$$
\begin{aligned}
\text { f } 345 & \equiv((f \text { 3) } 4) 5 \Rightarrow(f, 4) 5 \\
& \Rightarrow f, \prime 5 \Rightarrow 3+4+5 \Rightarrow 12
\end{aligned}
$$

Currying Example

The Combinatorial Function:

\qquad

- The combinatorial function $\binom{n}{r}$ "n choose r", computes the number of ways to pick r objects from n.

$$
\binom{n}{r}=\frac{n!}{r!*(n-r)!}
$$

In Haskell: \qquad
comb :: Int -> Int -> Int
comb n r = fact n/(fact r*fact(n-r))
? comb 53
10

Currying Example...

comb :: Int -> Int -> Int
comb n r = fact n/(fact r*fact(n-r))
comb $53 \Rightarrow$ (comb 5) $3 \Rightarrow$
comb ${ }^{5} 3 \Rightarrow$
120 / (fact 3 * (fact 5-3)) \Rightarrow
$120 /(6 *(f$ fact $5-3)) \Rightarrow$
120 / (6 * fact 2) \Rightarrow
$120 /(6 * 2) \Rightarrow$
120 / $12 \Rightarrow$
10
comb^{5} r $=120 /($ fact $r *$ fact (5-r))

- comb ${ }^{5}$ is the result of partially applying comb to its first argument.

Associativity

- Function application is left-associative:

$$
f a b=(f a) b \mid f a b \neq f(a b)
$$

- The function space symbol '->' is right-associative:

$$
\begin{aligned}
& a \rightarrow b \rightarrow c=a->(b->c) \\
& a \rightarrow b \rightarrow c \neq(a->b)->c
\end{aligned}
$$

- f takes an Int as argument and returns a function of type Int -> Int. g takes a function of type Int -> Int as argument and returns an Int:

```
f, :: Int -> (Int -> Int)
        |
f :: Int -> Int -> Int
        * 
g :: (Int -> Int) -> Int
```


What's the Type, Mr. Wolf?

- If the type of a function f is

$$
\mathrm{t}_{1} \rightarrow \mathrm{t}_{2}->\cdots \rightarrow \mathrm{t}_{n} \rightarrow \mathrm{t}
$$

- and f is applied to arguments

$$
e_{1}:: t_{1}, e_{2}:: t_{2}, \cdots, e_{k}:: t_{k},
$$

- and $\mathrm{k} \leq \mathrm{n}$
- then the result type is given by cancelling the types $\mathrm{t}_{1} \cdots \mathrm{t}_{k}$:

$$
t_{1} \rightarrow t_{2} \rightarrow \cdots \rightarrow t_{k} \rightarrow t_{k+1} \rightarrow \cdots \rightarrow t_{n} \rightarrow t
$$

- Hence, $f e_{1} e_{2} \cdots e_{k}$ returns an object of type

$$
t_{k+1}->\cdots->t_{n} \rightarrow t .
$$

- This is called the Rule of Cancellation.
flip : (a -> b -> c) -> b -> a -> c
flip f x y = f y x
- The flip function takes a function $f x y$ (f is the function and x and y its two arguments, and reorders the arguments!
- Or, more correctly, flip returns a new function f y x .
- You can use this when you want to specialize a function by supplying an argument, but the function takes its arguments in the "wrong order."

flip...

- Consider the (!!) function, for example:
> :type (!!)
(!!) :: [a] -> Int -> a
> :type flip(!!)
flip (!!) :: Int -> [a] -> a
> (!!) [1..10] 2
3
> (flip (!!)) 2 [1..10]
3
- Now you can write a function fifth using (!!) which returns the fifth element of a list:

```
fifth :: [a] -> a
fifth = (flip (!!)) 5
```


Exercise

- Define an operator $\$ \$$ so that $\mathrm{x} \$ \$ \mathrm{xs}$ returns True if x is an element in xs, and False otherwise.

Example:
? 4 \$\$ $[1,2,5,6,4,7]$
True
? 4 \$\$ [1,2,3,5]
False
? 4 \$\$ []
False

Exercise

- Define an function drop3 which takes a list as argument and returns a new list with the first three elements removed.
- Use currying!

Exercise

> :type elem
elem :: Eq a => a $->$ [a] $->$ Bool
> elem 3 [1..10]

- The elem function returns true if the first argument is a member of the second (a list).
- Write a function has3 xs which returns true if xs (a list) contains the number 3 .
- Write a function isSmallPrime x which returns true if x is one of the numbers 2,3,5,7.
- Use currying!
> isSmallPrime 2
True
> has3 [1]
False

