CSc 372

Comparative Programming Languages

11: Haskell - Higher-Order Functions

Department of Computer Science University of Arizona

Higher-Order Functions

- A function is Higher-Order if it takes a function as an argument or returns one as its result.
- Higher-order function aren't weird; the differentiation operation from high-school calculus is higher-order:

```
deriv :: (Float->Float)->Float->Float
deriv f x = (f(x+dx) - f x)/0.0001
```

- Many recursive functions share a similar structure. We can capture such "recursive patterns" in a higher-order function.
- We can often avoid the use of explicit recursion by using higher-order functions. This leads to functions that are shorter, and easier to read and maintain.

Currying Revisited

- We have already seen a number of higher-order functions. In fact, any curried function is higher-order. Why? Well, when a curried function is applied to one of its arguments it returns a new function as the result.

Uh, what was this currying thing?

- A curried function does not have to be applied to all its arguments at once. We can supply some of the arguments, thereby creating a new specialized function. This function can, for example, be passed as argument to a higher-order function.

Currying Revisited. . .

- A curried function of n arguments (of types $t_{1}, t_{2}, \cdots, t_{n}$) that returns a value of type t is defined like this:
fun : : $\mathrm{t}_{1} \rightarrow \mathrm{t}_{2}$-> \cdots-> $\mathrm{t}_{n} \rightarrow \mathrm{t}$
- This is sort of like defining n different functions (one for each $->$). In fact, we could define these functions explicitly, but that would be tedious:
fun $_{1}:$: t_{2}-> ... -> t_{n}-> t
$f u_{1} a_{2} \cdots a_{n}=\cdots$
fun $_{2}:$: t_{3}-> ... -> t_{n}-> t
$f_{u} n_{2} a_{3} \cdots a_{n}=\cdots$

Currying Revisited. . .

Duh, how about an example?

- Certainly. Lets define a recursive function get_nth n xs which returns the n :th element from the list xs:
get_nth 1 ($\left.\mathrm{x}: \mathrm{A}_{\mathrm{s}}\right)=\mathrm{x}$
get_nth n (_:xs) = get_nth (n-1) xs
get_nth 10 "Bartholomew" \Rightarrow 'e'
- Now, let's use get_nth to define functions get_second, get_third, get_fourth, and get_fifth, without using explicit recursion:

$$
\begin{array}{l|l}
\text { get_second = get_nth 2 } & \text { get_fourth = get_nth } 4 \\
\text { get_third = get_nth 3 } & \text { get_fifth = get_nth } 5
\end{array}
$$

Currying Revisited. . .

get_fifth "Bartholomew" \Rightarrow 'h'
map (get_nth 3)
["mob", "sea", "tar", "bat"] \Rightarrow
"bart"
So, what's the type of get_second?

- Remember the Rule of Cancellation?
- The type of get_nth is Int -> [a] -> a.
- get_second applies get_nth to one argument. So, to get the type of get_second we need to cancel get_nth's first type: Iht $->$ [a] $->a \equiv[a] ~->~ a . ~$

Patterns of Computation

Mappings

- Apply a function f to the elements of a list L to make a new list L^{\prime}. Example: Double the elements of an integer list. Selections
- Extract those elements from a list L that satisfy a predicate p into a new list L^{\prime}. Example: Extract the even elements from an integer list.
- Combine the elements of a list L into a single element using a binary function f. Example: Sum up the elements in an integer list.

The map Function

- map takes two arguments, a function and a list. map creates a new list by applying the function to each element of the input list.
- map's first argument is a function of type a -> b. The second argument is a list of type [a]. The result is a list of type [b].

$$
\begin{array}{ll}
\operatorname{map}::(a->b) & ->[a]->[b] \\
\operatorname{map} f[] & =[] \\
\operatorname{map} f(x: x s) & =f x: \operatorname{map} f x s
\end{array}
$$

- We can check the type of an object using the :type command. Example: :type map.

The map Function. . .

The map Function. . .

map $f[]=[]$ means: "The result of applying the function f to the elements of an empty list is the empty list."
map $f(x: x s)=f x$: map $f \times s$ means: "applying f to the list ($\mathrm{x}: \mathrm{xs}$) is the same as applying f to x (the first element of the list), then applying f to the list xs, and then combining the results."

The map Function. . .

Simulation:

```
map square [5,6] }
square 5 : map square [6] }
25 : map square [6] }
    25 : (square 6 : map square [ ]) }
    25 : (36 : map square [ ]) =
        25 : (36 : [ ]) =
    25 : [36] }
    [25,36]
```


The filter Function

- Filter takes a predicate p and a list L as arguments. It returns a list L^{\prime} consisting of those elements from L that satisfy p.
- The predicate p should have the type a -> Bool, where a is the type of the list elements.

Examples:

```
filter even [1..10] }=>\mathrm{ [2,4,6,8,10]
filter even (map square [2..5]) }
    filter even [4,9,16,25] }=>[4,16
filter gt10 [2,5,9,11,23,114]
    where gt10 x = x > 10 => [11,23,114]
```


The filter Function. . .

- We can define filter using either recursion or list comprehension.
filter :: (a -> Bool) -> [a] -> [a]
filter _ [] = []
filter p (x:xs)
| $\mathrm{p} x \quad=\mathrm{x}$: filter p xs
| otherwise = filter p xs
Using list comprehension:
filter :: (a -> Bool) -> [a] -> [a]
filter p xs $=[\mathrm{x} \mid \mathrm{x}<-\mathrm{xs}, \mathrm{p} \mathrm{x}]$

The filter Function. . .

The filter Function. . .

- doublePos doubles the positive integers in a list.

```
getEven :: [Int] -> [Int]
getEven xs = filter even xs
```

```
doublePos :: [Int] -> [Int]
```

doublePos :: [Int] -> [Int]
doublePos xs = map dbl (filter pos xs)
doublePos xs = map dbl (filter pos xs)
where dbl x = 2 * x
where dbl x = 2 * x
pos x = x > 0

```
    pos x = x > 0
```

Simulations:
getEven $[1,2,3] \Rightarrow[2]$
doublePos $[1,2,3,4] \Rightarrow$
map dbl (filter pos $[1,2,3,4]$) \Rightarrow
map dbl $[2,4] \Rightarrow[4,8]$

fold Functions

- A common operation is to combine the elements of a list into one element. Such operations are called reductions or accumulations.

Examples:

sum $[1,2,3,4,5] \equiv$

$$
(1+(2+(3+(4+(5+0))))) \Rightarrow 15
$$

concat ["H","i","!"] 三

$$
\text { ("H" ++ ("i" ++ ("!" ++ ""))) } \Rightarrow \text { "Hi!" }
$$

- Notice how similar these operations are. They both combine the elements in a list using some binary operator (+, ++), starting out with a "seed" value ($0, ~ " "$).

fold Functions. . .

- Haskell provides a function foldr ("fold right") which captures this pattern of computation.
- foldr takes three arguments: a function, a seed value, and a list.

```
foldr (+) 0 [1,2,3,4,5] => 15
foldr (++) "" ["H","i","!"] => "Hi!"
```

\qquad

```
foldr :: (a->b->b) -> b -> [a] -> b
foldr f z [ ] = z
foldr f z (x:xs) = f x (foldr f z xs)
```


fold Functions. . .

- Note how the fold process is started by combining the last element x_{n} with z. Hence the name seed.

$$
\text { foldr }(\oplus) \mathrm{z}\left[\mathrm{x}_{1} \cdots \mathrm{x}_{n}\right]=\left(\mathrm{x}_{1} \oplus\left(\mathrm{x}_{2} \oplus\left(\cdots\left(\mathrm{x}_{n} \oplus \mathrm{z}\right)\right)\right)\right)
$$

- Several functions in the standard prelude are defined using foldr:

```
and,or :: [Bool] -> Bool
and xs = foldr (&&) True xs
or xs = foldr (||) False xs
? or [True,False,False] }
    foldr (||) False [True,False,False] }
    True || (False || (False || False)) = True
```


fold Functions. . .

- Remember that foldr binds from the right:
foldr (+) $0[1,2,3] \Rightarrow(1+(2+(3+0)))$
- There is another function foldl that binds from the left:
foldl (+) $0[1,2,3] \Rightarrow(((0+1)+2)+3)$
- In general:

$$
\text { foldl }(\oplus) \mathrm{z}\left[\mathrm{x}_{1} \cdots \mathrm{x}_{n}\right]=\left(\left(\left(\mathrm{z} \oplus \mathrm{x}_{1}\right) \oplus \mathrm{x}_{2}\right) \oplus \cdots \oplus \mathrm{x}_{n}\right)
$$

fold Functions. . .

- In the case of (+) and many other functions

$$
\text { foldl }(\oplus) \mathrm{z}\left[\mathrm{x}_{1} \cdots \mathrm{x}_{n}\right]=\text { foldr }(\oplus) \mathrm{z}\left[\mathrm{x}_{1} \cdots \mathrm{x}_{n}\right]
$$

- However, one version may be more efficient than the other.

fold Functions...

Operator Sections

- We've already seen that it is possible to use operators to construct new functions:
(*2) - function that doubles its argument
(>2) - function that returns True for numbers >2.
- Such partially applied operators are known as operator sections. There are two kinds:

	$(o p a) b=b$ op a
$(* 2) 4$	$=4 * 2=8$
$(>2) 4$	$=4>2=$ True
$(++$ " $\backslash n ")$ "Bart"	$=$ "Bart" ++ " $\backslash n "$

Operator Sections. . .

(3:) $[1,2]=3: \quad[1,2]=[3,1,2]$
(0<) $5=0<5=$ True
(1/) $5=1 / 5$
Examples:
(+1) - The successor function.
(/2) - The halving function.
(: []) - The function that turns an element into a singleton list.

More Examples:
? filter ($0<$) (map (+1) [-2,-1,0,1])
$[1,2]$

takeWhile \& dropWhile

- We've looked at the list-breaking functions drop \& take:
take 2 ['a','b','c'] \Rightarrow ['a','b'] drop 2 ['a','b','c'] \Rightarrow ['c']
- takeWhile and dropWhile are higher-order list-breaking functions. They take/drop elements from a list while a predicate is true.
takeWhile even $[2,4,6,5,7,4,1] \Rightarrow$ $[2,4,6]$
dropWhile even $[2,4,6,5,7,4,1] \Rightarrow$ $[5,7,4,1]$

takeWhile \& dropWhile...

takeWhile :: (a->Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs)
| $\mathrm{p} x \quad=\mathrm{x}$: takeWhile $\mathrm{p} x \mathrm{x}$
| otherwise = []
dropWhile :: (a->Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p (x:xs)
| p x = dropWhile p xs
| otherwise = x:xs

takeWhile \& dropWhile...

- Remove initial/final blanks from a string:
dropWhile ((==) 'ь') "பேபHi!" \Rightarrow "Hi!"
takeWhile ((/=) 'ப') "Hi! $\sqcup \sqcup ч " ~ \Rightarrow ~$
"Hi!"

Summary

- Higher-order functions take functions as arguments, or return a function as the result.
- We can form a new function by applying a curried function to some (but not all) of its arguments. This is called partial application.
- Operator sections are partially applied infix operators.

Summary. . .

- The standard prelude contains many useful higher-order functions:
map f xs creates a new list by applying the function f to every element of a list xs.
filter p xs creates a new list by selecting only those elements from xs that satisfy the predicate p (i.e. ($p \mathrm{x}$) should return True).
foldr $\mathbf{f} \mathbf{z}$ xs reduces a list xs down to one element, by applying the binary function f to successive elements, starting from the right.
scanl/scanr f z xs perform the same functions as foldr/foldl, but instead of returning only the ultimate value they return a list of all intermediate results.

Exercise

Exercise (a):

- Define the map function using a list comprehension. Template: \qquad
$\operatorname{map} \mathrm{f} x=\left[\begin{array}{lll}\cdots & \mid \cdots\end{array}\right]$ Exercise (b):
- Use map to define a function lengthall xss which takes a list of strings xss as argument and returns a list of their lengths as result.
? lengthall ["Ay", "Caramba!"]
$[2,8]$

Exercise

(1) Give a accumulative recursive definition of foldl.
(2) Define the minimum xs function using foldr.
(3) Define a function sumsq n that returns the sum of the squares of the numbers $[1 \cdots n]$. Use map and foldr.
(4) What does the function mystery below do?

```
mystery xs =
    foldr (++) [] (map sing xs)
sing x = [x]
```

minimum $[3,4,1,5,6,3] \Rightarrow 1$

Exercise. . .

- Define a function zipp f xs ys that takes a function f and two lists $\mathrm{xs}=\left[\mathrm{x}_{1}, \cdots, \mathrm{x}_{n}\right]$ and $\mathrm{ys}=\left[\mathrm{y}_{1}, \cdots, \mathrm{y}_{n}\right]$ as argument, and returns the list $\left[f \mathrm{x}_{1} \mathrm{y}_{1}, \cdots, \mathrm{f} \mathrm{x}_{n} \mathrm{y}_{n}\right.$] as result.
- If the lists are of unequal length, an error should be returned. Examples:

$$
\begin{aligned}
& \text { zipp (+) }[1,2,3][4,5,6] \Rightarrow[5,7,9] \\
& \text { zipp }(==)[1,2,3][4,2,2] \Rightarrow[\text { False,True,False }] \\
& \text { zipp (==) }[1,2,3][4,2] \Rightarrow \text { ERROR }
\end{aligned}
$$

Exercise

- Define a function filterFirst p xs that removes the first element of xs that does not have the property p.

Example:

filterFirst even $[2,4,6,5,6,8,7] \Rightarrow$
$[2,4,6,6,8,7]$

- Use filterFirst to define a function filterLast p xs that removes the last occurence of an element of xs without the property p .
filterLast even $[2,4,6,5,6,8,7] \Rightarrow$
$[2,4,6,5,6,8]$

