CSc 372

Comparative Programming Languages
13: Haskell - Lazy Evaluation
Department of Computer Science University of Arizona

Lazy evaluation

- Haskell evaluates expressions using a technique called lazy evaluation:
(1) No expression is evaluated until its value is needed.
(2) No shared expression is evaluated more than once; if the expression is ever evaluated then the result is shared between all those places in which it is used.
- Lazy functions are also called non-strict and evaluate their arguments lazily or by need.
- C functions and Java methods are strict and evaluate their arguments eagerly.

Don't Evaluate Until Necessary

- The first of these ideas is illustrated by the following function:

$$
\text { ignoreArgument } \mathrm{x}=\text { "I didn't evaluate x" }
$$

- Since the result of the function ignoreArgument doesn't depend on the value of its argument x, that argument will not be evaluated:

$$
\begin{aligned}
& \text { \$ hugs +s } \\
& >\text { ignoreArgument (1/0) } \\
& \text { I didn't evaluate } \mathrm{x} \\
& \text { (246 reductions, } 351 \text { cells) }
\end{aligned}
$$

Don't Evaluate Until Necessary. . .

- The function seq forces strict evaluation when that is necessary:

$$
\begin{aligned}
& \text { > seq ignoreArgument (1/0) } \\
& \text { Inf } \\
& \text { (32 reductions, } 78 \text { cells) }
\end{aligned}
$$

Evaluate Shared Expressions Once

- The second basic idea behind lazy evaluation is that no shared expression should be evaluated more than once.
- For example, the following two expressions can be used to calculate $3 * 3 * 3 * 3$:
$\$$ hugs +s
> square*square where square $=3 * 3$
81
(30 reductions, 67 cells)
$>(3 * 3) *(3 * 3)$
81
(34 reductions, 45 cells)

Evaluate Shared Expressions Once. . .

- Notice that the first expression requires fewer reduction than the second.
- A reduction is the basic step of evaluating a Haskell expression, by applying a function to its argument.

Saving Reductions

- Consider these sequences of reductions:

```
square * square where square = 3 * 3
    -- calculate the value of square by
    -- reducing 3*3==>9 and replace each
    -- occurrence of square with this result
    ==> 9 * 9
    ==> 81
```

```
(3 * 3) * (3 * 3) -- evaluate first (3*3)
    ==> 9 * (3 * 3) -- evaluate second (3*3)
    ==> 9 * 9
    ==> 81
```

- Lazy evaluation means that only the minimum amount of calculation is used to determine the result of an expression.

Taking the Minimum

- Consider the task of finding the smallest element of a list of integers.

```
> minimum [100,99..1]
1
(2355 reductions, 3211 cells)
```

- [100, 99..1] denotes the list of integers from 1 to 100 arranged in decreasing order.
- Instead, we could first sort and then take the head of the result:

```
> :load List
> sort [100,99..1]
    [1, 2, 3, 4, 5, 6, 7, 8, ..., 99, 100]
(3430 reductions, 8234 cells)
```


Taking the Minimum. . .

- However, thanks to lazy evaluation, calculating just the first element of the sorted list actually requires less work in this particular case than the first solution using minimum:

```
> head (sort [100,99..1])
1
    (1877 reductions, 3993 cells)
    > minimum [100,99..1]
    1
    (2355 reductions, 3211 cells)
```


Infinite data structures

- Lazy evaluation makes it possible for functions in Haskell to manipulate 'infinite' data structures.
- The advantage of lazy evaluation is that it allows us to construct infinite objects piece by piece as necessary
- The function ones below generates an infinite list of 1 s :

```
ones = 1 : ones
> take 10 ones
[1,1,1,1,1,1,1,1,1,1]
(277 reductions, }389\mathrm{ cells)
```


Infinite data structures. . .

- Consider the following function which can be used to produce infinite lists of integer values:

```
countFrom \(\mathrm{n}=\mathrm{n}\) : countFrom ( \(\mathrm{n}+1\) )
```

> countFrom 1
$\left[1,2,3,4,5,6,7,8,{ }^{\wedge}\right.$ CInterrupted!]

Infinite data structures. . .

- For practical applications, we are usually only interested in using a finite portion of an infinite data structure.
- We can find the sum of the integers 1 to 10 :

$$
>\text { sum (take } 10 \text { (countFrom 1)) }
$$

55
(278 reductions, 440 cells)

- take n xs evaluates to a list containing the first n elements of the list xs.

Infinite data structures. . .

- Infinite data structures enable us to describe an object without being tied to one particular application of that object.
- The following definitions for infinite list of powers of two $[1,2$, 4, 8, ...]:

$$
\begin{gathered}
\text { powersOfTwo }=1: \text { map double powersOfTwo } \\
\text { where double } \mathrm{n}=2 * \mathrm{n}
\end{gathered}
$$

```
> take 10 powersOfTwo
[1,2,4,8,16,32,64,128,256,512]
```


Infinite data structures. . .

- xs!!n evaluates to the n :th element of the list xs.
- We can define a function to find the nth power of 2 for any given integer n :

```
powersOfTwo = 1 : map (*2) powersOfTwo
twoToThe n = powersOfTwo !! n
> twoToThe 5
32
```


Fibonacci

- Here's a definition of a function that generates an infinite list of all the fibonacci numbers:

$$
\begin{aligned}
& \text { fib }=1: 1: \quad[a+b \mid(a, b)<-~ z i p ~ f i b ~(t a i l ~ f i b)] \\
& >~ t a k e ~ \\
& \text { f } 0 \text { fib } \\
& {[1,1,2,3,5,8,13,21,34,55]}
\end{aligned}
$$

Acknowledgements

- These slides were derived mostly from the Gofer manual.

Functional programming environment, Version 2.20
(C) Copyright Mark P. Jones 1991.

- We're using hugs here rather than ghci since ghci doesn't have an easy way to show number of reductions.

