CSc 372

Comparative Programming Languages

17 : Haskell — Input/Output

Department of Computer Science
University of Arizona

Copyright (© 2013 Christian Collberg

collberg@gmail.com

The World isn't Functional

@ The real world isn't functional:
@ The real world has state
@ In the real world order matters
@ For example, if | move my book from the table to the chair, |
have changed the state of the world.
@ Also, to hang a painting on the wall | should

@ Hammer a nail in the wall
@ Hang the picture on the nail.

The reverse order doesn't work as well!

2/27

Actions in Haskell

@ To be useful, Haskell programs need to interact with the real
world.

@ For example:

¢ reading and writing to files
o graphics
@ networking

@ Haskell supports a notion of actions that happen in sequence.

3/27

O in Haskell

@ Consider this program:

main' :: 10 ()
main’' =
do

name <— getline

putStr " Please enter your name:

putStr (" Your name is

,”—|—|—name"—|—” y\nu)

@ and its execution:

> main’
Please entre your name:
Your name is 'bob’

bob

4/27

() is a type that contains exactly one element, namely O):

> ()

0

> show ()
n()u

> type ()

0 0

Note that () is both a type and a value!

5/27

What is I0 ()7

@ I0 () is the type of a function that performs some /0O
actions, but which returns nothing.

o If we wanted our program to return a string after performing
some actions, its type would be I0 String.

6/27

What does do do?

@ do sequences together multiple actions:

do
action 1
action 2

action n

@ You can use this alternate syntax:

[do {action 1; action 2; ...; action n}]

7/27

What is an action?

@ There are essentially four kinds of actions:

do
let n = expression
v <— getlLine
putStr expression
return expression

® let just binds a name to an expression, like we've seen before.
@ <- reads some value, and binds it to a name.
@ putStr (and other similar output functions) print some value.

@ return “packages up a value” so that we can return it from
an |/0O function.

8/27

What 1/0 functions are there?

® putStr :: String -> I0 O

@ putChar :: Char -> I0 O

@ getChar :: 1I0 Char

@ getlLine :: 1I0 String

@ return :: Monad m => a -> m a

9/27

How does a function return a read value?

@ Reading a string:

getName :: 10 String
getName =
do
putStr " Please enter your name:
name <— getline
return name

@ Running the function:

> getName
Please entre your name: Bob
" Bob”

10/27

Can we return any type?

@ Reading a string:

yes_no :: String —> 10 Bool
yes_no prompt =
do

putStr prompt

c <— getChar

let ok = ¢c == "y’
putStr "\n"
return ok

11/27

Example: Password database

passwd :: [(String,String)]
passwd = [("john","monkey"),("alice","banana")]
update :: String -> String -> [(String,String)]

-> [(String,String)]
update name new_pw passwd =
map (\ (n,p) -> if (n==name) then (n,new_pw)
else (n,p)) passwd

isUser :: String -> [(String,String)] -> Bool
isUser name passwd = foldr f False passwd
where f = (\(n,_) r ->
if n==name then True else r)

okPassword :: String -> String -> [(String,String)]
-> Bool
okPassword name pw passwd = elem (name,pw) passwd

12/27

Example: Password database

> passwd

[("john" ,"monkey”), (" alice” ,”banana"”)]
> update "john" "chimp” passwd
[("john” " chimp"), (" alice” ,”"banana”)]
> isUser "alice”

> isUser "alice” passwd

True

> okPassword
True

"alice” "banana" passwd

13/27

Example: Password database

getUser :: 10 String
getUser =
do
putStr " Enter your name: "

name <— getline
if isUser name passwd then

return name else
do

putStr "Not a user, try again!\n"

getUser

14/27

Example: Password database

checkPW

do

else
do

putStr " Enter your password:

pw <— getlLine

if okPassword name pw passwd then
return ()

String —> 10 ()

checkPW name =

putStr "Wrong password, try again!\n]
checkPW name

15/27

Example: Password database

changePW :: String -> I0 ()
changePW name =
do
putStr "Enter new password: "
newl <- getLine
putStr "Confirm new password: "
new2 <- getLine

if newl == new2 then
do
let new_pw = update name newl passwd
putStr ("New passwd: "++show new_pw++"\n")
else
do

putStr "Passwords don’t match,try again!\n"
changePW name

16/27

Sequencing actions

@ The sequence function takes a list of actions as input and
executes them in turn:

welcomeUser :: String —> 10 [()]

welcomeUser name = sequence |
putStr " Hello
putStr name,
putChar "1,
putChar "\n']

Here's the output:

Hello john!

[O). 0.0 0]

Here's another example:

> sequence (map putChar "hello\n")
hello 17/27

Sequencing actions. . .

@ Here's another example:

hello

[O).0.0.0.0.0]

> sequence (map putChar "hello\n")

18/27

Example: Password database

main :: 10 ()
main =
do
name <— getUser
welcomeUser name
checkPW name
ok <— yes_no "Change password [y/n]?"
if ok then
changePW name
else
return ()

@ Note the use of return() in the else clause!

19/27

Reading From Files

@ Here is how we open a file:

type FilePath = String
openFile :: FilePath —> I0OMode —> IO Handle
hClose :: Handle —> 10 ()

data IOMode = ReadMode | WriteMode |
AppendMode | ReadWriteMode

@ We can (lazily!) read in the entire file:

[hGetContents :: Handle —> 10 String]

20/27

Reading From Files

@ Here's a password file:

john._monkey
alice._banana

Reading in the entire file:

readF =
do

f <— openFile "passwd” ReadMode
¢ <— hGetContents f
return c

@ And here's the file read as a string:

> readF
"john monkey\nalice banana\n\n"

21/27

Reading and Parsing the Password File

openPWFile = do
handle <— Control.Exception.catch
(openFile "passwd” ReadMode)
(\ e => error

(

show (e:: Control.Exception.|OException)

)
)

return handle

22/27

Reading and Parsing the Password File. . .

readPWFile f = do
file <— hGetContents f

let d = map words (lines file)
let d' = filter (/=[]) d
let parse xs = case xs of {

[a,b] —> (a,b);
_—> error (
"error: "++show xs

)
}

let res = map parse d’
return res

23/27

Reading and Parsing the Password File. . .

load =
do
handle <— openPWFile
passwd <— readPWFile handle
return passwd
@ Example:
> load
[("john" ,"monkey”), (" alice” ,”banana"”)]

24/27

Exercise |

@ Write a program copy.hs that copies a file input.txt to
output.txt, while converting all characters to upper case.
@ Here's the main program:

main :: 10 ()

main = do
inh<—openFile "input.txt” ReadMode
outh<—openFile "output.txt” WriteModg
mainloop inh outh
hClose inh
hClose outh

@ Write the mainloop function!

mainloop :: Handle —> Handle —> 10 ()
mainloop inh outh =

25/27

Exercise |. ..

@ Useful functions:
@ hPutStrLn outhandle string
@ string <- hGetLine inhandle
© bool <- hIsSEOF inhandle

@ Input file:

> cat input.txt

there was a young lady of niger

who smiled as she rode on a tiger;

they returned from the ride

with the lady inside ,

and the smile on the face of the tiger.

(]

Output file:

> cat output. txt
THERE WAS A YOUNG LADY OF NIGER. ..

26/27

Acknowledgments

@ Bryan O’'Sullivan, Don Stewart, and John Goerzen, Real
World Haske”, http://book.realworldhaskell.org/read/io.html

27/27

http://book.realworldhaskell.org/read/io.html

