CSc 372
Comparative Programming Languages

18 : Haskell — Type Classes

Department of Computer Science
University of Arizona

Copyright (© 2013 Christian Collberg

collberg@gmail.com

Type Classes

@ Type classes allow us to specify that a particular type has
certain operations defined for it.

@ We've seen the Eq class already, it states that an instance of
this class has to have == defined.

2/20

The Eq Class

@ Consider this definition if Three Valued Logic:

[data TVL = True' | False’ | Unknown

@ We would like to be able to compare values of TVL for
equality, so we declare it as an instance of the Eq class:

instance Eq TVL where

True’ == True’ = True
False' == False’' = True
= False

This requires us to define the behavior of == for all values of

TVL.
3/20

The Eq Class. . .

® The Eq class is defined in the standard Prelude:

class Eq a where
==) :: a—>a —> Bool
(/=) i1 a—>a —> Bool

4/20

The Eq Class. . .

@ Now that we know what it means for two values of type TVL
to be equal, we can search in a list using the elem function:

> Unknown ‘elem ‘ [False', True’', Unknown, False|']
False
> True' ‘elem
True

[False ', True' ,Unknown, False ']

@ In ghci the :info command will show you definitions of a
name:

> :info Eq

class Eq a where
==):: a—>a —> Bool
(/=) :: a—>a —> Bool

5/20

The Show Class

@ We often want to control the way the values of a particular
type is displayed. To do this, create an instance of the Show
class:

class Show a where

showsPrec :: Int —> a —> ShowS
show :: a —> String
showlList :: [a] —> ShowS

@ Here we define how to print the values from the TVL class:

instance Show TVL where
show True' ="T"
show False’ = "F"
show Unknown = "7"

6/20

The Show Class. ..

@ We only have to define the show function, the others have
default implementations defined in terms of show.

@ Now a list, for example, of TVL values will print the way we
want to:

> [False',True’' ,Unknown, False ']
[F,T.7,F]

7/20

The Enum Class

@ Class Enum defines operations on sequentially ordered types:

class Enum a where
succ, pred i a —> a
toEnum it Int —> a
fromEnum i1 a —> Int
enumFrom a —> [a]
enumFromThen a—>a —> [a]
enumFromTo a—>a —> [a]
enumFromThenTo a—>a—>a —> [a]

8/20

The Enum Class. . .

@ We just have to define the fromEnum and toEnum operations:

instance Enum TVL where
fromEnum True’ =0
fromEnum False' =1
fromEnum Unknown = 2
toEnum 0 = True’
toEnum 1 = False’
toEnum 2 = Unknown

@ We now have access to all the functions in the class:

> [True’ .. Unknown]
[T,F,?]
> succ True'

9/20

The 0rd Class

@ The Ord class is used for totally ordered datatypes:

data Ordering = LT | EQ | GT

class Eq a => Ord a where
compare :: a —> a —> Ordering
(<) :: a—>a —> Bool
(<=):@: a—>a—> Bool
(>) :: a—>a —> Bool
(>=) :: a—>a —> Bool
max :: a —>a —>a
min :: a —>a —> a

We only need to define <=, the rest are added automatically.

10/20

The 0rd Class. ..

)

(]

In our case, since we've already defined TVL as being an
instance of Enum, declaring it an instance of 0rd is easy, just
define <= in terms of fromEnum:

instance Ord TVL where
c <=c' = fromEnum ¢ <= fromEnum c¢'

Now we can sort, for example:

> sort [False’,True',Unknown, False]
[T,F,F,?]

11/20

The Read Class. ..

@ The Read class is approximately the opposite of the Show
class: it converts a string to an element of a type.

instance Read TVL where

readsPrec _ "T" = [(True',"")]
readsPrec _ "F" = [(False’',"")]
readsPrec _ "?" = [(Unknown,"")]

@ Examples:

> read "T" :: TVL
T
> read "7?" :: TVL

?

12/20

Defining a Type Class

@ There's nothing stopping us from creating our own type
classes. Here's the Shape class that requires two functions
area and circumference to be defined:

class Shape a where
area :: a —> Float
circumference :: a —> Float

@ Here we define our own polygon data type:

data Poly = Triangle Float Float Float
| Rectangle Float Float
deriving Show

13/20

Defining a Type Class. . .

@ And now we can make Poly an instance of the Shape class:

instance Shape Poly where
area (Triangle a b c) =
sqrt (px(p—a)x(p—b)x(p—c))
where p = (a+b+c)/2

area (Rectangle a b) = axb
circumference (Triangle a b c) = at+b+c
circumference (Rectangle a b) = a+b

14/20

Exercise |

@ Consider this definition of a tree:

data Tree a = Branch (Tree a) (Tree a)

| Leaf a
@ Here are some examples of trees:
tl = Leaf 1
t2 = Leaf 2

t3 = Branch (Leaf 1) (Leaf 2)
t4 Branch (Leaf 1) (Leaf 3)
t5 = Branch (Leaf 1)
(Branch
(Branch (Leaf 2) (Leaf 3))
(Leaf 4))

15/20

Exercise |. ..

@ Make Tree an instance of the Eq class so that we can
compare trees for equality.

@ Examples:
> tl=—tl1
True
> t1=—t2
False
> t3—t4
False
> tb=—tb
True

16/20

Exercise I

@ Consider this data type for complex numbers:

[data Complex = Complex Int Int deriving Shovq

@ Instead of this ugly printing

> (Complex 4 5)
Complex 4 5

we want complex numbers to be printed in standard notation:

> (Complex 4 5)
4451

@ To accomplish this, make Complex an instance of the Show
class,

instance Show Complex where
show (Complex re im) =

17/20

Exercise Il. . .

@ We would like to be able to convert a string representation of
a complex number into the Complex datatype:

>(read "4 + 5i"):: Complex
4451

@ For simplicity, we assume the + is always surrounded by
whitespace.

@ To allow this conversion, override the readsPrec function in
the Read typeclass:

instance Read Complex where
readsPrec _ s = [((Complex re im),"")]
where
re =
im =

18/20

Exercise Il. . .

@ With Complex both an instance of the Read and the Show
class, write a main program that prompts the user for a
complex number, and then prints it out:

Enter a complex number: 4 4+ 5i
You entered: 4+5i

19/20

Acknowledgments

@ nttp://www.haskell.org/tutorial/classes.html

@ nhttp://scienceblogs.com/goodmath/2007/01/16/haskell-the-basics-of-type-cla-1/

20/20

http://www.haskell.org/tutorial/classes.html
http://scienceblogs.com/goodmath/2007/01/16/haskell-the-basics-of-type-cla-1/

