CSc 372
Comparative Programming Languages

20 : Haskell — Monads

Department of Computer Science
University of Arizona

Copyright (© 2013 Christian Collberg

collberg@gmail.com

The Monad

@ Formally, a monad is defined as

class Monad m where

(>>=) ::ma->(a—-—>mb)—-—>mb
return ra—>ma

(>>) c:ma-—->mb->mb

fail :: String —>m a

@ return x creates a “box” just containing the value x.

@ a >> b takes a monad box a, throws away any computations
it's done, and then returns the box b. What's important here
is that the two actions are sequenced, one occurs before the
other.

2/18

The Monad. ..

@ Formally, a monad is defined as

class Monad m where

(>>=) ::ma->(a—-—>mb)—-—>mb
return ra—>ma

(>>) c:ma-—->mb->mb

fail :: String —>m a

@ a >>= f is similar to >>, but the value that a constructs
becomes the input to f, and the final result is whatever £

returns.
@ In fact, >> is defined in terms of >>=
[m>>k:m>>:(_—>k)]

@ fail also has a default definition:

[fail S = error s

3/18

The do Notation

@ The do notation that we saw earlier, is just syntactic sugar
for sequencing using >>= and >>.

@ These two definitions are identical:

testla =
do
putStr "Welcome!\n"
putStr " Please enter your name:\n "
testlb =
putStr "Welcome!\n" >>
putStr " Please enter your name:\n

@ Note how we're using >> since the value produced by the first
putStr isn't needed (it's ()).

4/18

The do Notation. ..

@ Here, the value produced by the second line is needed by the
third, so we use >>=:

test2a = do
putStr " Please enter your name:
name <— getline
putStr ("Your name is '"4+namet+’ '\n")
test2b =
putStrLn " Please enter your name:
getLine >>= \name —>
putStrLn (" Your name is "++namet+" "\n")

>>

@ Note how in a >>= £, f is a function. f takes one argument,
which is the value produced by a.
@ Both >> and >>= sequence together actions in a particular

order.
5/18

The 10 Monad

@ So, the do notation makes use of the I0 monad:

class Monad 10 where

(>>=) :: 10 a—-—>(a—->10b)—->100b
return :: a —> 10 a

(>>) 010 a—=>10 b—>10 b

fail :: String —> 10 a

@ Monads (and do) can be used in many other situations when
we want to manipulate some sort of state.

6/18

The Maybe Monad

@ One way of handling errors in Haskell is the Maybe datatype.
It's a box that can either hold a value, or not:

data Maybe’' a = Just’' a | Nothing'
deriving Show

@ We can now add together values, with special cases when a
value is missing:

add :: Maybe' Int —> Maybe' Int —> Maybe' Int
add _ Nothing' = Nothing’

add Nothing' _ = Nothing’

add (Just’ a) (Just’' b) = Just’ (a + b)

7/18

The Maybe Monad. . .

o Example:

> add Nothing’' Nothing'
Nothing'’

> add (Just’' 5) Nothing’
Nothing'’

> add (Just' 5) (Just’' 6)
Just ' 11

8/18

The Maybe Monad. ..

@ We can turn Maybe’ into a monad, and then use the do

notation:
instance Monad Maybe' where

(Just’ x) >>=k = k x

Nothing' >>=k = Nothing’

return x = Just’' x
test3a =

do {x<—Just' 6;y<—Just’' 7;return (xxy)}
test3b =

do {x<—Just’ 6;y<—Nothing';return (xxy)}
test3c =

do {x<—Nothing ' ;y<—Just’' 7;return (xxy)}
test3d =

do {x<—Nothing';y<—Nothing';return (xxy)}

9/18

Dealing with failure

@ Assume that you have a sequence of actions you want to
perform:

Fig2hnS ..
That is, f returns a which becomes input to g, and so on.

@ Now what happens if one computation fails?

Faghly 2

@ Well, we probably want to propagate that failure all the way
to the end:
a_ _fajl , fail
fS>g—=h= -
@ We can use the Maybe monad to deal with failure in a
sequence of computations.

10/18

The Maybe Monad — Example

@ Say we want to look up someone on the government'’s
noflylist, given the following databases:

name2ssn :: [(String, String)]

name2ssn = [(" Alice”, "612—-88-8976"),
("Bob” , "714-22-9852"),
(" Charlies” , "181-11-0987"),
("Dana”, "091-08-1101")
]

ssn2passport :: [(String, String)]

ssn2passport = [("612—-88—-8976" ,"123456987"),
("714—22-9852" ,"222123908"),
("181—-11-0987" ,"789654120"),
("091-08—-1101" ,"890674123")

]

11/18

The Maybe Monad — Example. ..

noflylist :: [(String ,h Bool)]
noflylist = [(” 123456987, True),
(" 789654120" , True)

]

12/18

The Maybe Monad — Example. ..

@ Here's a lookup function:

lookup’ :: Eq a=>a —> [(a, b)] —> Maybe b
lookup’ _ [] = Nothing
lookup’' x ((a,b):xs)

| x=a = Just b

| otherwise = lookup' x xs

@ Note that all the database may be missing entries, so we use
the Maybe datatype to model lookup failure.

13/18

The Maybe Monad — Example. ..

@ Here's how we chain together lookups in the three databases,
without using monads:

mayfly a =
case lookup’' a name2ssn of
Just b —> (
case lookup' b ssn2passport of
Just ¢ —> (
case lookup' ¢ noflylist of

Just d —>d
Nothing —> False

)

Nothing —> False

)

Nothing —> False

14/18

The Maybe Monad — Example. ..

@ And here's how we do it using monads:

mayfly ' a =
do
b <— lookup' a name2ssn

c <— lookup' b ssn2passport
d <— lookup’ ¢ noflylist
return d

@ The Maybe monad propagates failures: it is defined so that if
it encounters a Nothing it will just pass it on.

15/18

The State Monad

@ Consider this implementation of a stack:

pop :: [Int] —> (Int, [Int])
pop (x:xs) = (x, xs)

push :: Int —> [Int] —> ((), [Int])
push x xs = ((), x:xs)

simulateStack s = let
(-, s1l) = push 3 s
(x, s2) = pop sl
(-, s3) = push (x % x) s2
in pop s3

res = simulateStack [1, 2, 3]

@ Note how push and pop return a pair (value,new-stack). 16/18

The State Monad. ..

@ Here's an alternative implementation, using the State monad:

pop’' :: State [Int] Int
pop' = state (\(x:xs) —> (x, xs))
push':: Int —> State [Int] ()

push’ x = state (\xs —> ((), x:xs))

simulateStack ' = (push’ 3) >>=
(\- => pop') >>=
(\x —> push (x * x)) >>=
(\x —> pop ")

res = runState simulateStack’' [1, 2, 3]

@ Note how push and pop return a pair (value,new-stack).

17/18

Acknowledgments

@ Brandon Simmons, The State Monad: A Tutorial for the

Confused.? http://brandon.si/code/the-state-monad-a-tutorial-for-the-confused
*] Ryan Horn, http://brandon.si/code/the-state-monad-a-tutorial-for-the-confused

*] A phySIca/ ana/ogy for monadS, http://monads.haskell.cz/html/analogy.html

18/18

http://brandon.si/code/the-state-monad-a-tutorial-for-the-confused
http://brandon.si/code/the-state-monad-a-tutorial-for-the-confused
http://monads.haskell.cz/html/analogy.html

