
CSc 372

Comparative Programming Languages

21 : Haskell — Accumulative Recursion

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2013 Christian Collberg

1/18

collberg@gmail.com

Stack Recursion

The dots n function returns a string consisting of n dots.

The dots are “stacked” until we reach the terminating arm of
the recursion. O(n) items are stored on the stack.

dots 0 = ""

dots n = "." ++ dots (n-1)

dots 3 ⇒ "." ++ dots 2 ⇒

"." ++ ("." ++ dots 1) ⇒

"." ++ ("." ++ ("." ++ dots 0)) ⇒

"." ++ ("." ++ ("." ++ "")) ⇒

"." ++ ("." ++ ".") ⇒

"." ++ ".." ⇒ "..."

2/18

Accumulative Recursion

We can sometimes get a more efficient solution by giving the
function one extra argument, the accumulator, which is used
to gather the final result.

We will need to use an extra function.

In the case of the dots function, the stack recursive definition
is actually more efficient.

dots n = dots’ n ""

dots’ 0 acc = acc

dots’ n acc = dots’ (n-1) (acc ++ ".")

3/18

Accumulative Recursion. . .

dots n = dots’ n ""

dots’ 0 acc = acc

dots’ n acc = dots’ (n-1) (acc ++ ".")

dots 3 ⇒

dots’ 3 "" ⇒

dots’ 2 ("" ++ ".") ⇒ dots’ 2 (".") ⇒

dots’ 1 ("." ++ ".") ⇒ dots’ 1 ("..") ⇒

dots’ 0 (".." ++ ".") ⇒ dots’ 0 ("...") ⇒

"..."

4/18

Stack vs. Accumulative Recursion

dots 3dots 3

"." ++ dots (3−1)

dots 2

"." ++ dots (2−1)

"." ++ dots (1−1)

""

dots 1

dots 0

""

"..."

".."

"."

dots’ (3−1) ("" ++ ".")

"..."

"..."

dots’ 0 "..."

dots’ (1−1) (".." ++ ".")

dots’ 1 ".."

dots’ (2−1) ("." ++ ".")

"..."

"..."

dots’ 2 "."

"..."

dots’ 3 ""

5/18

Stack vs. Accumulative Recursion. . .

Notice how with stack recursion we’re building the result on
the way back up through the layers of recursion.

This means that for each recursive call many arguments have
to be “stacked”, until they can be used on the way back up.

With accumulative recursion we’re instead building the result
on the way down.

Once we’re at the bottom of the recursion (when the base
case has been reached) the result is ready and only needs to
be passed up through the layers of recursion.

6/18

Stack Recursion Over Lists

Stack recursive functions all look very much alike.

All we need to do is to fill in the template below with the
appropriate values and functions.

do is the operation we want to apply to every element of the
list.

combine is the operation we want to use to combine the
value computed from the head of the list, with the value
produced from the tail.

Template:

f [] = final val

f (x:xs) = combine (do x) (f xs)

7/18

Stack Recursion Over Lists. . .

f [] = final val

f (x:xs) = combine (do x) (f xs)

sumlist :: [Int] -> Int

sumlist [] = 0

sumlist (x:xs) = x + sumlist xs

final val=0; do x = x; combine="+"

double :: [Int] -> [Int]

double [] = []

double (x:xs) = 2*x : double xs

final val=[]; do x = 2*x; combine=":"

8/18

Accumulative Recursion Over Lists

main calls aux, the function that does the actual work. main
passes along init val, the value used to initiate the
accumulator.

do is the operation we want to apply to every element of the
list.

combine is the operation we want to use to combine the
value computed from the head of the list with the
accumulator. Template:

main xs = aux xs init val

aux [] acc = acc

aux (x:xs) acc = aux xs (combine do x acc)

9/18

Accumulative Recursion Over Lists. . .

main xs = aux xs init val

aux [] acc = acc

aux (x:xs) acc = aux xs (combine do x acc)

Example sumlist:

sumlist xs = sumlist’ xs 0

sumlist’ [] acc = acc

sumlist’ (x:xs) acc = sumlist’ xs (x + acc)

init val=0; do x = x;

combine="+"

10/18

Accumulative Recursion Over Lists. . .

main xs = aux xs init val

aux [] acc = acc

aux (x:xs) acc = aux xs (combine do x acc)

Example maxlist:

maxlist [] = error("...")

maxlist (x:xs) = maxlist’ xs x

maxlist’ [] acc = acc

maxlist’ (x:xs) acc = maxlist’ xs (max x a)

init val=head xs; do x = x;

combine="max"

11/18

The reverse Function

“The reverse of an empty list is the empty list. The reverse of a
list (x:xs) is the reverse of xs followed by x.”

Examples:

reverse [1,2] ⇒

reverse [2] ++ [1] ⇒

(reverse [] ++ [2]) ++ [1] ⇒

([] ++ [2]) ++ [1] ⇒

[2] ++ [1] ⇒ [2,1]

In Haskell:

reverse :: [Int] -> [Int]

reverse [] = []

reverse (x:xs) = (reverse xs) ++ [x]

12/18

The reverse Function. . .

reverse [1,2,3,4] ⇒

reverse [2,3,4] ++ [1] ⇒

(reverse [3,4] ++ [2]) ++ [1] ⇒

((reverse [4] ++ [3]) ++ [2]) ++ [1] ⇒

(((reverse [] ++ [4]) ++ [3]) ++ [2]) ++ [1] ⇒

((([] ++ [4]) ++ [3]) ++ [2]) ++ [1] ⇒

(([4] ++ [3]) ++ [2]) ++ [1] ⇒

([4,3] ++ [2]) ++ [1] ⇒

[4,3,2] ++ [1] ⇒

[4,3,2,1]

13/18

The reverse Function. . .

[4]

reverse [] ++ [4]

[] []

[4,3,2,1]

reverse [1,2,3,4]

reverse [2,3,4] ++ [1]

reverse [3,4] ++ [2]

reverse [4] ++ [3]

[4,3,2]

[4,3]

Each list append A ++ B

takes O(length A) time.

There are O(n)
applications of reverse,
where n is the length of
the list. Each application
invokes append on a list
of length O(n). Total
time = O(n2).

14/18

The reverse Function. . .

We can devise a more efficient solution by using accumulative
recursion.

At each step we tack the first element of the remaining list on
to the beginning of the accumulator.

Examples:

reverse [1,2] ⇒

reverse’ [1,2] [] ⇒

reverse’ [2] (1:[]) ⇒

reverse’ [] (2:[1]) ⇒ [2,1]

In Haskell:

reverse xs = rev xs []

rev [] acc = acc

rev (x:xs) acc = rev xs (x:acc)

15/18

The reverse Function. . .

rev [1,2,3,4] []

reverse [1,2,3,4]

[4,3,2,1]
[1,2,3,4]

[1,2,3,4]

[1,2,3,4]

[1,2,3,4]

[1,2,3,4]

[1,2,3,4]

rev [] 4:[3,2,1]

rev [4] 3:[2,1]

rev [3,4] 2:[1]

rev [2,3,4] 1:[]
There are O(n)
applications of reverse.
Each application of rev
invokes : which is an
O(1) operation. Total
time = O(n).

16/18

Summary

Accumulative recursion uses an extra parameter in which we
collect new information as we go deeper into the recursion.
The computed value is returned unchanged back up through
the layers of recursion.

Stack recursion performs much of the work on the way back
up through the layers of recursion.

Accumulative recursion is often more efficient than stack
recursion.

17/18

Exercise

occurs x xs returns the number of times the item x occurs
in the list xs.

1 Write a stack recursive definition of occurs.

2 Write an accumulative recursive definition of occurs.

3 Try the two definitions with a large list as input. How many
cells/reductions do they use?

Template:

occurs :: Int -> [Int] -> Int

Examples:

? occurs 1 [3,1,4,5,1,1,2,1]

4

18/18

