CSc 372

Comparative Programming Languages

27 : Prolog — Lists

Department of Computer Science
University of Arizona

Copyright (© 2013 Christian Collberg



collberg@gmail.com

Introduction



Prolog Lists

Haskell:

>1: 2: 3: [
[1,2,3]
Prolog:

AN
- L= _.(a, .(b, .(Cc, (DO
7- L= .(a, .(b, .(c b/\

L = [a, b, c]
A
[]

@ Both Haskell and Prolog build up lists using cons-cells.

@ In Haskell the cons-operator is :, in Prolog ..
3/53



Prolog Lists. . .

?7- L= .(a, .C.QL, .C2, 1)), . (b, .(c, [ION
= [a, [1, 2], b, c]

/\
/\
/\b/\

211 /N
¢

@ Unlike Haskell, Prolog lists can contain elements of arbitrary
type.

4/53



Matching Lists — [Head | Taill

A F A= F variable subst.
(] (] yes
(] a no
[al (] no
[[1] (] no
[a | [b, c]] L yes L=[a,b,c]

[al (H | T] yes  H=a, T=[]

5/53



Matching Lists — [Head | Taill]...

A F A= F variable subst.
[a, b, c] [H | T] yes H=a,T=[b,c]
[a, [1, 2]] [H | T] yes H=a, T=[[1, 2]1]
[[1, 2], al] [H | T] yes H=[1,2], T=[al
[a, b, c] [X, Y, c] yes X=a, Y=c
[a, Y, c] [X, b, Z] yes X=a, Y=b, Z=c

[a, bl [X, c] no

6/53



Member



Prolog Lists — Member

)
(2)

¢)
(2)

)

memberl (X, [YI_])
member1 (X, [_|Y])

member2 (X, [X|.]).

member2 (X, [_1Y])

member3 (X, [Y|Z])

- X =Y.
:— member1(X, Y).

:— member2(X, Y).

:- X = Y; member3(X,Z).

8/53



Prolog Lists — Member. . .

?- member(x, [a, b, c, x, f]).
yes

?- member(x, [a, b, c, f]).
no

?7- member (x, [a, [x, yl, f1).
no

?7- member(Z, [a, [x, y], f1).
Z = a
z =[x, yl
Z = f

9/53



Prolog Lists — Member. . .

member1(x, [a, b, x, d])
(1) ~ (2)

menber 1(x, [a|_]) menber1(x, [_|[b,x,d]])

X=a

menber (x, [b, x, ] )
(1 (2)

menber1(x, [b|_]) rrenberil(x, [_I[x,d]])

|
x=b

nmenber :‘L(x, [x]_1)

X=X

succeed 10/53



Append



Prolog Lists — Append

fol l owed by makes
this one this one this one

N/

append(Ll1, L2, L3).

(1) append([1, L, L)
(2) append ([X|L1], L2, [X|L3]) :-
append (L1, L2, L3).

@ Appending L onto an empty list, makes L.
@ To append L, onto Ly to make L3

@ Let the first element of L; be the first element of Ls.
® Append L, onto the rest of L; to make the rest of Ls.

12/53



Prolog Lists — Append. ..

N\
app([a, b], [1, 2], Q L=[a, b, 1, 2]
(1) "~ (2) NS

app([],L,L) app([al[b]],[1,2],[a|7L3])

fail Lo

-

app([b].[1,2], L3;)
(1 N~ (2) )

~

app([],L,L) app([b[[]],[1,2], [bIL3 1)

fail ii////
e

app([].[1,2],[1,2])

succeed

13/53



Prolog Lists — Append. ..

L=[a, b, 1, 2]

N\

app(fa, b], [1, 2], L)
app([al[b]],[1,2],[alL3])

app([b][1].[1,2],[b[L3"])

N\

app([].[1,2],[1,2])

?- L =1[a | L3], L3 = [b | L3’], L3’ = [1,2].
L = [a,b,1,2], L3 = [b,1,2], L3’ = [1,2]

14/53



Prolog Lists — Using Append

O append([a,b]l, [1,2], L)
s What's the result of appending [1,2] onto [a,b]?
@ append([a,b],[1,2],[a,b,1,2])
@ Is [a,b,1,2] the result of appending [1,2] onto [a,b]?
© append([a,b], L, [a,b,1,2])
@ What do we need to append onto [a,b] to make [a,b,1,2]7

@ What's the result of removing the prefix [a,b] from
[a,b,1,2]7?

15/53



Prolog Lists — Using Append. ..

Q append(L, [1,2], [a,b,1,2])
o What do we need to append [1,2] onto to make [a,b,1,2]7
o What's the result of removing the suffix [1,2] from
[a,b,1,2]7

© append(L1, L2, [a,b,1,2])
o How can the list [a,b,1,2] be split into two lists L1 & L27

16/53



Prolog Lists — Using Append. ..

app([a, b], L_[a b, 1, 2])

(1) <~ 2
app([1,L,L) aIDIO([aI[b]],4L2,[a|[b,1,2]])

app([b].L2’<\,[b, 1,2])

(1 (2)\\/\
app([]. L, 1) app([bI[11,L2"" [bI[L,2]1)
7
|

app([]. 12" [1,2])

(1) o
app([],[1,2],[1,2])

succeed

17/53



Prolog Lists — Using Append. ..

?- append (L1, L2, [a,b,c]).

L1 =[]

L2 = [a,b,c] ;
L1 = [a]

L2 = [b,c] ;
L1 = [a,b]

L2 = [c] ;

L1 = [a,b,c]
L2 = [1 ;

no

18/53



Prolog Lists — Using Append. ..

app(L1, L2, [a, b, 1, 2])

(1) "~ (2)
app([1.[a,b,1,2] app([alLl],L2,[al[b,1,2]])
[a,b,1,2])
app(L1,L2,[b,1,2])
(1 (2)
app([].[b,1,2] app([bl LY ],L2"",[b][1,2]])
[b,1,2]) \
app(LL L2 [1,2])

(1
app([].[1,2],[1,2])

succeed

19/53



Prolog Lists — Reusing Append

member Can we split the list Y into two lists such that X is at
the head of the second list?

adjacent Can we split the list Z into two lists such that the two
element X and Y are at the head of the second list?

last Can we split the list Y into two lists such that the
first list contains all the elements except the last one,
and X is the sole member of the second list?

20/53



Prolog Lists — Reusing Append. . .

member (X, Y) :- append(_, [X|Z], Y).
?- member (x, [a,b,x,d]).

adjacent(X, Y, Z) :- append(_, [X,YIQl, 2).
?- adjacent(x,y, [a,b,x,y,d]).

last(X, Y) :- append(., [X], Y).
?- last(x, [a,b,x]).

21/53



Reversing a List



Prolog Lists — Reverse

e © ¢ ¢

reversel is known as naive reverse.
reversel is quadratic in the number of elements in the list.
From The Art of Prolog, Sterling & Shapiro pp. 12-13, 203.

Is the basis for computing LIPS (Logical Inferences Per
Second), the performance measure for logic computers and
programming languages. Reversing a 30 element list (using
naive reverse) requires 496 reductions. A reduction is the
basic computational step in logic programming.

23/53



Prolog Lists — Reverse. . .

@ reversel works like this:

@ Reverse the tail of the list.
@ Append the head of the list to the reversed tail.

@ reverse?2 is linear in the number of elements in the list.
@ reverse?2 works like this:

@ Use an accumulator pair In and Out

@ In is initialized to the empty list.

© At each step we take one element (X) from the original list (Z)
and add it to the beginning of the In list.

© When the original list (Z) is empty we instantiate the Qut list
to the result (the In list), and return this result up through the
levels of recursion.

24/53



Prolog Lists — Reverse. . .

reversel ([], [1).
reversel ([XIQ], Z) :-
reversel(Q, Y), append(Y, [X], Z).

reverse2(X, Y) :- reverse2(X, [, Y).
reverse2([X|Z], In, Out) :-

reverse(Z, [X|In], Out).
reverse2([], Y, Y).

25/53



Reverse — Naive Reverse

revi([a,b,c,d],[d,c,b,a])

/.\
revi([b,c,d],[d,c,b]) app([d,c,b],[a],[d, c,b, a])
[ ]

revi([c.d],[d c]) app([d,c],[b],[d, c,b]) app([c,b].[a].[c,b, a])

e N S

revi([d],[d]) app([d],[cl,[d,c]) app(lc],[b],[c,b]) apPp(Lb],[al,[b, a])

’ NN N

app([1.[cl.[c]l) app([],[b],[b])  app([l.[al.[a])
revi([],[]) app([1.[d],[d])

26/53



Reverse — Smart Reverse

reverse2([a,b,c,d], D D=[d, c, b, a]
¥ H] ) 1

N

reverse2([a,b,c,d],[],D

| ,

Voo
reverse2([b,c,d],[a], D

co

T
reverse2([c,d],[b,a], D

S

Voo
reverse2([d],[c,b,a],D

/ A

V// TN ‘\

reverse2([],[d,c, b, a], D)

27/53



Delete



Prolog Lists — Delete. . .

del ete fromthis to yield
this one Iist\ this |ist

delete( X, L1, L2).

delete_one @ Remove the first occurrence.
delete_all @ Remove all occurrences.

delete_struct @ Remove all occurrences from all levels of a list
of lists.

29/53



Prolog Lists — Delete. . .

?- delete_one(x, [a, x, b, x], D).
D = [a, b, x]
?- delete_,all(x, [a, x, b, x], D).
D = [a, b]
?- delete_,all(x, [a, x, b, [c, x], x], D).
D = [a, b, [c, x]]
?7- delete_struct(x, [a, x, [c, x], v(x)], D).
D = [a, b, [c], v(x)]

30/53



Prolog Lists — Delete. . .

delete_one
@ If X is the first element in the list then return
the tail of the list.
@ Otherwise, look in the tail of the list for the first
occurrence of X.

31/53



Prolog Lists — Delete. . .

delete_all

@ If the head of the list is X then remove it, and
remove X from the tail of the list.

@ If X is not the head of the list then remove X
from the tail of the list, and add the head to the
resulting tail.

© When we're trying to remove X from the empty
list, just return the empty list.

32/53



Prolog Lists — Delete. . .

@ Why do we test for the recursive boundary case
(delete_all (X, [1,[])) last? Well, it only happens once so
we should perform the test as few times as possible.

@ The reason that it works is that when the original list (the
second argument) is [1, the first two rules of delete_all
won't trigger. Why? Because, [] does not match [H|T],
that's why!

33/53



Prolog Lists — Delete. . .

delete_struct

@ The first rule is the same as the first rule in
delete_all.

@ The second rule is also similar, only that we
descend into the head of the list (in case it
should be a list), as well as the tail.

© The third rule is the catch-all for lists.

@ The last rule is the catch-all for non-lists. It
states that all objects which are not lists (atoms,
integers, structures) should remain unchanged.

34/53



Prolog Lists — Delete. . .

delete_one(X, [X1Z],Z).

delete_one(X,[VIZ],[VIY]) :-
X \==1V,
delete_one(X,Z,Y).

delete_all(X, [X1Z],Y) :- delete_all(X,Z,Y).
delete_all (X, [VIZ],[VIY]) :-

X\==1V,

delete_all(X,Z,Y).
delete_all (X, [1,[1).

35/53



Prolog Lists — Delete. . .

(1) delete_struct(X,[X|Z],Y) :-
delete_struct(X, Z, Y).

(2) delete_struct(X,[VIZ],[QlY]):-
X \==1V,
delete_struct(X, V, Q),
delete_struct(X, Z, Y).

(3) delete_struct(X, [1, [1).
(4) delete_struct(X, Y, Y).

36/53



Prolog Lists — Delete. . .

Y = [[11]]
ds(x, [x [x [x11. V)
(1) |
d_s(x, [[x [x11, (Q@Y)
PN

ds(x, [x, [xI1, @

y A
! 3 )
EOTE (" ‘

d_s(x, [[x]], LQl )

d_s(x, [XTQ~---___ (2}~
A o d_s(x, [1, V)
(1) A
h (3)
d_s(x,[1.Y)
A d_s(x, []. [1)
(3)

d_s(x,[1,11)

37/53



Application: Sorting



Sorting — Naive Sort

permutation(X, [Z|V]) :-
delete_one(Z,X,Y),
permutation(Y,V).

permutation([],[1).

ordered ([X]).

ordered([X,Y|Z]) :-
X =<Y,
ordered([Y|Z]).

naive_sort(X, Y) :-

permutation(X, Y),
ordered(Y).

39/53



Sorting — Naive Sort. . .

@ This is an application of a Prolog cliche known as
generate-and-test.

naive_sort

@ The permutation part of naive_sort
generates one possible permutation of the input

@ The ordered predicate checks to see if this
permutation is actually sorted.

© If the list still isn't sorted, Prolog backtracks to
the permutation goal to generate an new
permutation, which is then checked by ordered,
and so on.

40/53



Sorting — Naive Sort. . .

permutation
@ If the list is not empty we:
@ Delete some element Z from the list
@ Permute the remaining elements
© Add Z to the beginning of the list
When we backtrack (ask permutation to
generate a new permutation of the input list),
delete_one will delete a different element from
the list, and we will get a new permutation.
@ The permutation of an empty list is the empty
list.

@ Notice that, for efficiency reasons, the boundary case is put
after the general case.

41/53



Sorting — Naive Sort. . .

delete one Removes the first occurrence of X (its first
argument) from V (its second argument).

@ Notice that when delete_one is called, its first
argument (the element to be deleted), is an
uninstantiated variable. So, rather than deleting
a specific element, it will produce the elements
from the input list (4 the remaining list of
elements), one by one:

?- delete_one(X,[1,2,3,4],Y).
X=1,Y=1[2,3,4] ;

X=2,Y-=1[1,3,4] ;
X=3,Y=1[1,2,4] ;
X=4,Y=1[1,2,3] ;
no.

42/53



Sorting — Naive Sort. . .

The proof tree in the next slide illustrates
permutation([1,2,3],V). The dashed boxes give variable values
for each backtracking instance:

First instance: delete_one will select X=1 and Y=[2,3]. Y will
then be permuted into Y’=[2,3] and then (after
having backtracked one step) Y’=[3,2]. In other
words, we generate [1,2,3], [1,3,2].

Second instance: We backtrack all the way back up the tree and
select X=2 and Y=[1,3]. Y will then be permuted
into Y’=[1,3] and then Y’=[3,2]. In other words,
we generate [2,1,3], [2,3,1].

43/53



Sorting — Naive Sort. . .

Third instance: Again, we backtrack all the way back up the tree
and select X=3 and Y=[1,2]. We generate [3,1,2],
[3,2,1].

?7- permutation([1,2,3],V).
= [1,2,3] ;
= [1,3,2] ;
= [2,1,3] ;
= [2,3,1] ;
= [3,1,2] ;
= [3,2,1] ;

S S <S<sS<<
|

44/53



Permutations

perm([1,2,3],[XV])-—>1123],[13,2],[21,3],[23,1],..

//////////3\\\\\\\\\;;;\\\\vz[2,3].[3,2],[1v2]-[2'1]"”

del _one(X, [1,2,3], ) perm XAV vz a0,
,,,,,,,, ‘ . VAL
X
(23T del one(X Y, Y) perm(Y . [X ' [V"1)
e xE xs TN
LY?[JLLSJJ ‘f:::::::: L:::_:[:]::: del _One(x' 77Y’ ’Y”) pern«([],\/’ ')
s CoIX=Loix=s e |
S iy v X= ,
‘Y:[ 1, 2]: f:::::::‘ ss=====2 \LY”:[] : . \V4 :[]
bomooos X=1 ) x=2 T .

Y=[2] oy e[l ]

45/53



Sorting Strings

@ Prolog strings are lists of ASCII codes.
® "Maggie" = [77,97,103,103,105,101]

aless(X,Y) :-
name (X,X1), name(Y,Y1),
alessx(X1,Y1).

alessx([1,[-1-1).

alessx([X|J,[Yl]) (- X < Y.
alessx([A|X],[AlY]) :- alessx(X,Y).

46/53



Application: Mutant Animals



Mutant Animals

@ From Prolog by Example, Coelho & Cotta.
@ We're given a set of words (French animals, in our case).

@ Find pairs of words where the ending of the first one is the
same as the beginning of the second.

@ Combine the words, so as to form new “mutations”.

48/53



Mutant Animals. . .

© 0 6060 o006

Find two words, Y and Z.

Split the words into lists of characters. name (atom, list)
does this.

Split Y into two sublists, Y1 and Y2.

See if Z can be split into two sublists, such that the prefix is
the same as the suffix of Y (Y2).

If all went well, combine the prefix of Y (Y1) with the suffix of
Z (Z2), to create the mutant list X.

Use name to combine the string of characters into a new atom.

49/53



Mutant Animals. . .

mutate(M) :-

animal(Y), animal(Z), Y \== Z,
name(Y,Ny), name(Z,Nz),

append (Y1,Y2,Ny), Y1 \==[],
append (Y2, Z2, Nz), Y2 \== [],
append(Y1,Nz,X), name(M,X).

animal (alligator).
animal (tortue) .
animal (caribou) .
animal (ours) .
animal (cheval).
animal (vache) .
animal (lapin) .

/*
/*
/*
/*
/*
/*
/*

crocodilex*/
turtle */
caribou */
bear */
horse */
cow */
rabbit */

50/53



Mutant Animals. . .

?- mutate(X).

X = alligatortue ; /* alligator+ tortue */

X = caribours ; /* caribou + ours *x/

X = chevalligator ; /% cheval + alligatorx/
X = chevalapin ; /* cheval + lapin */

X = vacheval /* vache + cheval */

51/53



Summary



Prolog So Far. ..

o Lists are nested structures
@ Each list node is an object
@ with functor . (dot).
¢ whose first argument is the head of the list
¢ whose second argument is the tail of the list
@ Lists can be split into head and tail using [H|T].
@ Prolog strings are lists of ASCII codes.

name (X,L) splits the atom X into the string L (or vice versa).

53/53



