
CSc 372

Comparative Programming Languages

30 : Prolog — Techniques

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2013 Christian Collberg

1/51

collberg@gmail.com

Generate & Test – Integer
Division

Generate & Test

A generate-and-test procedure has two parts:

1 A generator which can generate a number of possible
solutions.

2 A tester which succeeds iff the generated result is an
acceptable solution.

When the tester fails, the generator will backtrack and generate a
new possible solution.

3/51

Generate & Test – Division

We can define integer arithmetic (inefficiently) in Prolog:

% Integer generator.

is int(0).

is int(X) :- is int(Y), X is Y+1.

% Result = N1 / N2.

divide(N1, N2, Result) :-

is int(Result),

P1 is Result*N2,

P2 is (Result+1)*N2,

P1 =< N1, P2 > N1, !.

| ?- divide(6,2,R).

R = 3

4/51

Generate & Test – Division. . .

is int(0).

is int(X) :- is int(Y), X is Y+1.

divide(N1, N2, Result) :-

is int(Result),

P1 is Result*N2, P2 is (Result+1)*N2,

P1 =< N1, P2 > N1, !.

divide(6,2,R) --- N1=6, N2=2

Res P1 P2 P1 =< N1 P2 > N1

0 0 2 True False

1 2 4 True False

2 4 6 True False

3 6 12 True True

5/51

Generate & Test – Tic-Tac-Toe

Generate & Test – Tic-Tac-Toe

This is a part of a program to play Tic-Tac-Toe (Naughts and
Crosses).

Two players take turns to put down X and O on a 3x3 board.
Whoever gets a line of 3 (horizontal, vertical, or diagonal)
markers has won.

X
put 0 in
square 4.

1 2 3

4 5 6

987

threatened X 0

X 0

Naught must

7/51

Generate & Test – Tic-Tac-Toe. . .

We’ll look at the predicate forced move which answers the
question:

Am I (the naught-person) forced to put a marker at a
particular position?

The program tries to find a line with two crosses.

It only makes sense to find one forced move, hence the cut.

8/51

Generate & Test – Tic-Tac-Toe. . .

aline(L) is a generator – it generates all possible lines(L).

threatening(L,B,Sq) is a tester – it succeeds if Sq is a
threatened square in line L of board B.

forced move(Board, Sq) :-

aline(Line),

threatening(Line, Board, Sq), !.

?- forced move(b(x, ,o, , , ,x,o,x),4).

yes

aline([1,2,3]). aline([4,5,6]). aline([7,8,9]).

aline([1,4,7]). aline([2,5,8]). aline([3,6,9]).

aline([1,5,9]). aline([3,5,7]).

9/51

Gen. & Test – Tic-Tac-Toe. . .

threatening succeeds if it finds a line with two crosses and
one empty square.

threatening([X,Y,Z],B,X) :-

empty(X,B), cross(Y,B), cross(Z,B).

threatening([X,Y,Z],B,Y) :-

cross(X,B), empty(Y,B), cross(Z,B).

threatening([X,Y,Z],B,Z) :-

cross(X,B), cross(Y,B), empty(Z,B).

10/51

Gen. & Test – Tic-Tac-Toe. . .

A square is empty if it is an uninstantiated variable.

arg(N,S,V) returns the N:th element of a structure S.

empty(Sq, Board) :-

arg(Sq,Board,Val), var(Val).

cross(Sq, Board) :-

arg(Sq,Board,Val), nonvar(Val), Val=x.

naught(Sq, Board) :-

arg(Sq,Board,Val), nonvar(Val), Val=o.

11/51

Arbitrage

Generate & Test – Arbitrage

From the Online Webster’s:

arbitrage simultaneous purchase and sale of the same or

equivalent security in order to profit from price

discrepancies

?- arbitrage.

dollar dmark yen 1.03751

yen dollar dmark 1.03751

dmark yen dollar 1.03751

13/51

Generate & Test – Arbitrage. . .

arbitrage :-

profit3(From, Via, To, Profit), % Gen

Profit > 1.03, % Test

write(From), write(’ ’),

write(Via), write(’ ’),

write(To), write(’ ’),

write(Profit), nl, fail.

arbitrage.

% Find three currencies, and the profit:

profit3(From, Via, To, Profit) :-

best rate(From, Via, P1, R1),

best rate(Via, To, P2, R2),

best rate(To, From, P3, R3),

Profit is R1 * R2 * R3.

14/51

exchange(pound, dollar, london, 1.550).

exchange(pound, dollar, new york, 1.555).

exchange(pound, dollar, tokyo, 1.559).

exchange(pound, yen, london, 153.97).

exchange(pound, yen, new york, 154.05).

exchange(pound, yen, tokyo, 154.3).

exchange(pound, dmark, london, 2.4075).

exchange(pound, dmark, new york, 2.44).

exchange(pound, dmark, tokyo, 2.408).

exchange(dollar, yen, london, 98.3).

exchange(dollar, yen, new york, 98.35).

exchange(dollar, yen, tokyo, 98.25).

exchange(dollar, dmark, london, 1.537).

exchange(dollar, dmark, new york, 1.58).

exchange(dollar, dmark, tokyo, 1.57).

exchange(yen, dmark, london, 0.015635).

exchange(yen, dmark, new york, 0.0155).

exchange(yen, dmark, tokyo, 0.0158).

Generate & Test – Arbitrage. . .

% We can convert back and forth

% between currencies:

rate(From, To, P, R) :-

exchange(From, To, P, R).

rate(From, To, P, R) :-

exchange(To, From, P, S), R is 1/S.

% Find the best place to convert

% between currencies From & To:

best rate(From, To, Place,Rate):-

rate(From, To, Place, Rate),

not((rate(From, To, P1, R1), R1>Rate)).

16/51

Stable Marriages

Stable Marriages

Suppose there are N men and N women who want to get
married to each other.

Each man (woman) has a list of all the women (men) in his
(her) preferred order. The problem is to find a set of
marriages that is stable.

A set of marriages is unstable if two people who are not married
both prefer each other to their spouses. If A and B are men and X

and Y women, the pair of marriages A− Y and B − X is unstable
if

A prefers X to Y , and

X prefers A to B .
PrefersMarried to

Y

X

B

A
WomenMen

Y

X

B

A
WomenMen

18/51

Stable Marriages – Example

Person Sex 1st choice 2nd choice 3rd choice
Avraham M Chana Ruth Zvia
Binyamin M Zvia Chana Ruth
Chaim M Chana Ruth Zvia
Zvia F Binyamin Avraham Chaim
Chana F Avraham Chaim Binyamin
Ruth F Avraham Binyamin Chaim

Chaim-Ruth, Binyamin-Zvia, Avraham-Chana is stable.

Chaim-Chana, Binyamin-Ruth, Avraham-Zvia is unstable,
since Binyamin prefers Zvia over Ruth and Zvia prefers
Binyamin over Avraham.

19/51

Stable Marriages. . .

Write a program which takes a set of people and their
preferences as input, and produces a set of stable marriages as
output.

Input Format:

prefer(avraham, man,

[chana,tamar,zvia,ruth,sarah]).

men([avraham,binyamin,chaim,david,elazar]).

women([zvia, chana, ruth, sarah, tamar]).

The first rule, says that avraham is a man and that he prefers
chana to tamar, tamar to zvia, zvia to ruth, and ruth to
sarah.

20/51

prefer(avraham, man, [chana, tamar, zvia, ruth, sarah]).

prefer(binyamin, man, [zvia, chana, ruth, sarah, tamar]).

prefer(chaim, man, [chana, ruth, tamar, sarah, zvia]).

prefer(david, man, [zvia, ruth, chana, sarah, tamar]).

prefer(elazar, man, [tamar, ruth, chana, zvia, sarah]).

prefer(zvia, woman, [elazar, avraham, david, binyamin, chaim]).

prefer(chana, woman, [david, elazar, binyamin, avraham, chaim]).

prefer(ruth, woman, [avraham, david, binyamin, chaim, elazar]).

prefer(sarah, woman, [chaim, binyamin, david, avraham, elazar]).

prefer(tamar, woman, [david, binyamin, chaim, elazar, avraham]).

Stable Marriages. . .

gen generates all possible sets of marriages, unstable tests if
they are stable.

go :-

men(ML), women(WL),

gen(ML, WL, [], L), \+unstable(L)),
show(L), fail.

go.

?- men(ML), women(WL), gen(ML,WL,[],L).

L = [m(elazar,tamar),m(david,sarah),

m(chaim,ruth),m(binyamin,chana),

m(avraham,zvia)] ? ;

· · · · · · · · ·

22/51

Stable Marriages — Generate

gen([A|M1], W, In, Out) :-

delete(B, W, W1),

gen(M1, W1, [m(A,B)|In], Out).

gen([],[],L,L).

delete(A, [A|L], L).

delete(A, [X|L], [X|L1]) :-

delete(A, L, L1).

23/51

Stable Marriages — Test

% A prefers B to C.

pref(A, B, C) :-

prefer(A, , L),

append(, [B|S], L), !,

member(C, S), !.

unstable(L) :-

append(, [A|R], L),

member(B, R),

(is unstable(A,B);

is unstable(B,A)).

is unstable(m(A,Y), m(B,X)) :-

pref(A, X, Y),

pref(X, A, B).

24/51

Stable Marriages. . .

PrefersMarried to
Y

X

B

A
WomenMen

Y

X

B

A
WomenMen

25/51

Bedtime Story

Puzzles – Bedtime Story

“Helder, a poor scientist, was in love with the daughter

of an admiral. One day, a general captured the girl.

Helder rode to the general’s barrack and killed the

general. The girl was grateful and fell in love with

Helder. The admiral was so happy to have his daughter

back he gave Helder half of all his boats.”

“Who is the father of the girl?”

“Who is rich?”

“Who loves who?”

“Who is poor?”

“Who captured who?”

“Who killed who?”

27/51

Puzzles – Bedtime Story. . .

:- op(500, xfy, ’is ’).

:- op(500, yfx, ’loves’).

:- op(500, yfx, ’kills’).

:- op(500, yfx, ’to’).

:- op(500, yfx, ’captures’).

:- op(500, yfx, ’rides to’).

:- op(500, yfx, ’gives’).

:- op(500, yfx, ’is father of’).

:- op(800, yfx, ’and’).

X and Y :- X, Y.

28/51

Puzzles – Bedtime Story. . .

helder is poor.

helder is scientist.

admiral is happy.

admiral is father of girl.

helder loves girl.

girl loves helder.

general captures girl.

helder kills general.

admiral gives half boats to helder.

29/51

Puzzles – Bedtime Story. . .

% Who loves who?

?- Z loves Y, write(Z), write(’ loves ’),

write(Y), nl, fail.

helder loves girl

girl loves helder

% Who captures who?

?- Z captures Y.

Z = general

Y = girl

30/51

Puzzles – Bedtime Story. . .

% Who kills who?

?- Z kills Y.

Z = helder

Y = general

% Who loves who’s daughter?

?- Z loves G and F is father of G.

Z = helder

G = girl

F = admiral

31/51

Puzzles – Trees

Puzzles – Trees

The Crewes, Dews, Grandes, and Lands of Bower Street each
have a front-yard tree: Catalpa, Dogwood, Gingko, Larch.

The Grandes’ tree and the Catalpa are on the same side of the
street.

The Crewes live across the street from the Larch.

The Larch is across the street from the Dews’ house.

No tree starts with the same letter as its owner’s name.

Who owns which tree?

33/51

Puzzles – Trees

| ?- solve.

Grandes owns the Larch

Crewes owns the Dogwood

Dews owns the Ginko

Lands owns the Catalpa

34/51

Puzzles – Trees. . .

Bower Street

Larch

Crewes

Grandes Lands

Dews

Situation 2

Larch

Dews Crewes Grandes

Lands

Situation 1 S

N

Bower Street

Catalpa

Catalpa

? ?

35/51

Puzzles – Trees. . .

% Let’s assume that the Larch is on the

% north side of the street.

northside(’Larch’).

% The Crewes live across the street from

% the Larch. The Larch is across the

% street from the Dews’ house.

southside(’Crewes’).

southside(’Dews’).

% The Grandes’ tree and the ’Catalpa’

% are on the same side of the street.

northside(’Catalpa’) :-

northside(’Grandes’).

36/51

Puzzles – Trees. . .

% If Grandes have a ’Larch’, then they

% must live on the north side.

northside(’Grandes’) :-

have(’Grandes’, ’Larch’).

% Grandes have a ’Larch’, if noone

% else does.

have(’Grandes’,’Larch’) :-

not own(’Crewes’,’Larch’),

not own(’Dews’,’Larch’),

not own(’Lands’,’Larch’)

37/51

Puzzles – Trees. . .

% then the Dews’ and Crews’ will be

% on the south side. Also, if the

% Catalpa is on the north the Dogwood

% and Ginko must both be on the south

% side (since each house has one tree).

southside(’Dogwood’) :-

northside(’Larch’),

northside(’Catalpa’).

southside(’Ginko’) :-

northside(’Larch’),

northside(’Catalpa’).

38/51

Puzzles – Trees. . .

% Are you a tree or a plant?

person(X) :- member(X,

[’Grandes’,’Crewes’,’Dews’,’Lands’]).

tree(X) :- member(X,

[’Catalpa’,’Ginko’,’Dogwood’,’Larch’]).

% No tree starts with the same letter as

% its owner’s name.

not own(X,Y) :-

name(X, [A|]), name(Y,[A|]).

% The Grandes’ tree and the ’Catalpa’

% are on the same side of the street.

not own(’Grandes’,’Catalpa’).

39/51

Puzzles – Trees. . .

% Only a person can own a tree.

not own(X,Y) :- person(X), person(Y).

not own(X,Y) :- tree(X), tree(Y).

% A person can only own a tree that’s on

% the same side of the street as

% themselves.

not own(X,Y) :- northside(X),southside(Y).

not own(X,Y) :- southside(X),northside(Y).

40/51

Puzzles – Trees. . .

% You can’t own what someone else owns.

not own(’Crewes’, X) :- owns(’Dews’, X).

not own(’Lands’, X) :- owns(’Crewes’, X).

not own(’Lands’, X) :- owns(’Dews’,X).

owns(X,Y) :-

person(X), tree(Y),

not(not own(X,Y)).

solve :-

owns(Person,Tree),

write(Person), write(’ owns the ’),

write(Tree),nl,fail.

solve.

41/51

Logic Arithmetic

Arithmetic In Logic

Arithmetic in Prolog is just like arithmetic in imperative
languages. We can’t do 25 is X + Y and hope to get X
and Y instantiated to every pair of numbers that sum to 25.

There are cases when we need the power of logic arithmetic,
rather than the efficient built-in operators. That is no
problem, we can always define the logic arithmetic predicates
ourselves.

For example, how do we split a number into the two parts
Note that this is similar to splitting a list using append.

43/51

Arithmetic In Logic. . .

We can always write our own logic arithmetic predicates.

% Represent S as the sum of 2 numbers.

% minus(S, D1, D2) -- S − D1 = D2

minus(S, S, 0).

minus(S, D1, D2) :- % Note that

S > 0, S1 is S-1, % S must be

minus(S1, D1, D3), % instantiated.

D2 is D3 + 1.

?- minus(3, X, Y).

X = 3, Y = 0 ;

X = 2, Y = 1 ;

X = 1, Y = 2 ;

X = 0, Y = 3

44/51

Arithmetic In Logic. . .

The minus predicate splits S into D1 + D2. Why does it
work? Well, look at this:

S1 = S − 1 first line

D3 = S1− D1 second line

D2 = D3 + 1 third line

S = S1 + 1

= (D3 + D1) + 1

= ((D2− 1) + D1) + 1

= D2 + D1

Note that the minus predicate require the first argument to
be instantiated, but not the second and third. minus, below,
is a lot like append.

45/51

Pythagorean Triples

5

5

4

4

3

3

46/51

Pythagorean Triples. . .

?- pythag(X, Y, Z).

X = 4, Y = 3, Z = 5 ;

X = 3, Y = 4, Z = 5 ;

X = 8, Y = 6, Z = 10 ;

X = 6, Y = 8, Z = 10 ;

X = 12, Y = 5, Z = 13 ;

X = 5, Y = 12, Z = 13 ;

X = 12, Y = 9, Z = 15

47/51

Pythagorean Triples. . .

is int is used to generate a sequence of numbers.

int triple splits the generated integer S into the sum of
three integer X, Y, Z.

In other words, first we check all triples that sum to 1 to see if
any of them are pythagorean triples, then all triples that sum
to 2, etc. This obviously will eventually check “all” triples. It
also will make sure that we get them “in order”, with the
smallest triples first.

48/51

Pythagorean Triples. . .

% Generate a sequence of numbers.

is int(0).

is int(X) :- is int(Y), X is Y+1.

pythag(X, Y, Z) :-

int triple(X, Y, Z),

Z*Z =:= X*X + Y*Y.

% Generate integer triples: S=X+Y+Z.

int triple(X, Y, Z) :-

is int(S),

minus(S, X, S1), X > 0,

minus(S1, Y, Z), Y > 0, Y > 0.

49/51

Exercise: Crossword Puzzle

Across Down

2

1

1

3 2

3

1 The Fifth
Element.

2 Mumintroll
mum.

3 Beer.

1 Kills at chess.

2 Best drummer.
Ever.

3 Electric Light
Orchestra.

Write a program that solves the crossword puzzle above, assuming
this database of words:

word(leeloo). word(death). word(ale).

word(tove). word(levon). word(elo).

50/51

Exercise: Crossword Puzzle

1 Now, assume that you have a much bigger database of words.

2 How would you organize the database for much faster
searching?

3 How would you rewrite your code to make use of the new
database structure?

51/51

