CSc 372

Comparative Programming Languages

$$
31 \text { : Prolog - Exercises }
$$

Department of Computer Science University of Arizona

Problem I

Write a procedure islist which succeeds if its argument is a list, and fails otherwise.

Problem II

Write a procedure alter which changes English sentences according to rules given in the database.
Example:

```
change(you, i).
change(are, [am, not]).
change(french, german).
change(do, no).
?- alter([do,you,know,french],X).
    X = [no,i,know,german]
?- alter([you,are,a,computer],X).
    X = [i,[am,not],a, computer]
```


Problem III

Write a list subtraction procedure.
Example:

$$
\begin{aligned}
& ?-\operatorname{sub}([1,2,4,6,8],[2,6], \mathrm{L}) . \\
& \quad \mathrm{L}=[1,4,8] .
\end{aligned}
$$

Problem IV

Write a procedure pick which returns the first N elements of a given list.
Example:

$$
\begin{aligned}
& ?-\operatorname{pick}([1,2,4,6,8], 3, \mathrm{~L}) . \\
& \mathrm{L}=[1,2,4] .
\end{aligned}
$$

Problem V

Write a procedure alt which produces every other element in a list. Example:

$$
\begin{aligned}
& ?-\mathrm{alt}([1,2,3,4,5,6], \mathrm{A}) . \\
& \mathrm{A}=[1,3,5]
\end{aligned}
$$

Problem VI

Write a procedure del which removes duplicate elements from a list.
Example:

$$
\begin{aligned}
& ?-\operatorname{del}([a, c, x, a, g, c, d, a], A) . \\
& A=[a, c, x, g, d]
\end{aligned}
$$

Problem VII

Write a procedure tolower which converts an atom containing upper case characters to the corresponding atom with only lower case characters.
Example:

$$
\begin{aligned}
& ?-\text { tolower('hEjHoPp3', A). } \\
& \text { A = hej_hopp3 }
\end{aligned}
$$

Problem VIII

Write a procedure max3 which produces the largest of three integers.
Example:

$$
\begin{aligned}
& ?-\max 3(3,5,1, X) . \\
& \quad X=5
\end{aligned}
$$

Problem IX

Write a procedure double which multiplies each element in a list of numbers by 2 .
Example:

$$
\begin{gathered}
?-\text { double }([1,5,3,9,2], A) . \\
A=[2,10,6,18,4]
\end{gathered}
$$

Problem X

Write a procedure ave which computes the average of a list of numbers.
Example:

$$
\begin{aligned}
& ?-\quad \text { ave }([1,5,3,9,2], A) . \\
& A=4
\end{aligned}
$$

Problem XI

Write a procedure sum which produces the sum of the integers up to and including its first argument.
Example:

$$
\begin{gathered}
?-\operatorname{sum}(5, S) \\
S=15
\end{gathered}
$$

Problem XII

Suppose our database contains facts of the form

$$
\begin{aligned}
& \text { person_age(Name, Age). } \\
& \text { person_sex(Name, Sex). }
\end{aligned}
$$

where Sex is either male or female. Write a procedure combine which extends the database with additional facts of the form
person_full(Name, Age, Sex).

The procedure should produce one such fact for each person who has both an age record and a sex record.

Problem XII. . .

Example: Given the following database

$$
\begin{aligned}
& \text { person_age(chris, 25). \% Yeah, right... } \\
& \text { person_sex(chris, male). } \\
& \text { person_age(louise, 8). } \\
& \text { person_sex(louise, female). }
\end{aligned}
$$

combine should produce these additional facts:

$$
\begin{aligned}
& \text { person_full(chris, } 25 \text {, male). } \\
& \text { person_full(louise, } 8 \text {, female). }
\end{aligned}
$$

Problem XIII

Write a Prolog procedure which reverses the order of Johns children in the database. For example, given the following database

$$
\begin{aligned}
& \text { child(mary, john). } \\
& \text { child(jane, john). } \\
& \text { child(bill, john). }
\end{aligned}
$$

the goal ?- reversefacts. should change it to

$$
\begin{aligned}
& \text { child(bill, john). } \\
& \text { child(jane, john). } \\
& \text { child(mary, john). }
\end{aligned}
$$

Problem XIV

Write a Prolog procedure to assemble a list of someone's children from the facts in the database. The database should remain unchanged.
Example:

$$
\begin{aligned}
& \text { child(mary, john). } \\
& \text { child(jane, john). } \\
& \text { child(bill, john). } \\
& \text { ?- assemble(john, L). } \\
& \quad \text { L = [mary, jane, bill] }
\end{aligned}
$$

Problem XV

Write down the all results (including variable bindings) of the following query:

$$
\begin{gathered}
?-\quad \operatorname{append}([],[1,2 \mid B], C), \\
\quad \operatorname{append}([3,4],[5], B) .
\end{gathered}
$$

Problem XVI

Write down the all results (including variable bindings) of the following query:

$$
\text { ?- bagof(X, Y^append(X, Y, }[1,2,3,4]), \mathrm{Xs}) \text {. }
$$

Problem XVII

Write down the all results (including variable bindings) of the following query:
?- L=[1,2], member (X, L), delete(X, Y, L).

Problem XVIII

Write down the all results (including variable bindings) of the following query:
?- member $(X,[a, b, c]), \operatorname{member}(Y,[a, b, c]),!, X \backslash=Y$.

Problem XIX

Given the following Prolog database

$$
\begin{aligned}
& \text { balance(john, 100). } \\
& \text { balance(sue, 200). } \\
& \text { balance(mary, 100). } \\
& \text { balance(paul, 500). }
\end{aligned}
$$

list all the results of these Prolog queries:
(1) ?- bagof(Name, balance(Name, Amount), Names).
(2) ?- bagof(Name, Amount^balance(Name, Amount), Names).
(3) ?- bagof(Name, Name^balance(Name, Amount), Names).

Problem XX

Describe (in English) what the following predicate does:
\% Both arguments to bbb are lists.
bbb([], []).
bbb (A, [X|F]) :- append(F, [X], A).

Problem XXI

Given the following program

$$
\begin{aligned}
& a(1,2) . \\
& a(3,5) . \\
& a(R, S):-b(R, S), b(S, R) . \\
& b(1,3) . \\
& b(2,3) . \\
& b(3, T):-b(2, T), b(1, T) .
\end{aligned}
$$

list the first answer to this query:

$$
\text { ?- } a(X, Y), b(X, Y)
$$

Will there be more than one answer?

Problem XXII

Given the following definitions:

```
f(1, one).
f(s(1), two).
f(s(s(1)), three).
\[
f(s(s(s(X))), N):-f(X, N) .
\]
```

what are the results of these queries? If there is more than one possible answer, give at least two.
(1) ?- $f(s(1), A)$.
(2) ?- $f(s(s(1), t w o)$.
(3) ?- $f(s(s(s(s(s(s(1))))), C)$.
(4) ?- $f(\mathrm{D}$, three).

Problem XXIII

Write a Prolog predicate sum_abs_diffs(List1, List2, Diffs) which sums the absolute differences between two integer lists of the same length.
Example:

$$
\begin{aligned}
& ?-\text { sum_abs_diffs }([1,2,3],[5,4,2], X) . \\
& X=7 \% \text { abs }(1-5)+\operatorname{abs}(2-4)+\operatorname{abs}(3-2)
\end{aligned}
$$

Problem XXIV

Write a Prolog predicate transpose (A, AT) which transposes a rectangular matrix given in row-major order.
Example:

$$
\begin{gathered}
?-\text { transpose }([[1,2],[3,4]], \mathrm{AT}) . \\
\mathrm{AT}=[[1,3],[2,4]]
\end{gathered}
$$

Problem XXV

Write Prolog predicates that given a database of countries and cities

```
% country(name, population (in thousands),
% capital).
country(sweden, 8823, stockholm).
country(usa, 221000, washington).
country(france, 56000, paris).
% city(name, in_country, population).
city(lund, sweden, 88).
city(paris, usa, 1). % Paris, Texas.
```


Problem XXV...

Answer the following queries:
(1) Which countries have cities with the same name as capitals of other countries?
(2) In how many countries do more than $\frac{1}{3}$ of the population live in the capital?
(3) Which capitals have a population more than 3 times larger than that of the secondmost populous city?

Problem XXV. . .

\%country(name, population (in thousands), capital). country(sweden, 8823, stockholm). country(usa, 221000, washington).
country(france, 56000, paris).
country(denmark, 3400, copenhagen).
\% city(name, in_country, population).
city(lund, sweden, 88).
city(new_york, usa, 5000). \% Paris, Texas.
city(paris, usa, 1). \% Paris, Texas.
city(copenhagen, denmark, 1200).
city(aarhus, denmark, 330).
city(odense, denmark, 120).
city (stockholm, sweden, 1300).
city (gothenburg, sweden, 350).
city(washington, usa, 3400).
city(paris, france, 2000).

Problem XXVI

Write a Prolog predicate that extracts all words immediately following "the" in a given list of words.
Example:

$$
\begin{gathered}
\text { ?- find([the, man, closed, the, door, } \\
\text { of, the, house], X). } \\
X=\text { [man, door, house] }
\end{gathered}
$$

Problem XXVII (Midterm Exam 372/04)

Write a Prolog predicate dup that duplicates each element of a list. Example:

$$
\begin{gathered}
?-\operatorname{dup}([2,5, x], A) . \\
A=[2,2,5,5, x, x]
\end{gathered}
$$

Problem XXVIII (Midterm Exam 372/04)

The following Prolog program evaluates constant expressions:

$$
\begin{aligned}
& \text { eval }(A+B, V):-\operatorname{eval}(A, V 1), \text { eval }(B, V 2), \\
& V \text { is } V 1+V 2 . \\
& e v a l(A * B, V):-\operatorname{eval}(A, V 1), \operatorname{eval}(B, V 2), \\
& V \text { is } V 1 * V 2 . \\
& \operatorname{eval}(X, X):- \text { integer }(X) . \\
& ?-\operatorname{eval}(3 * 4+5, V) . \\
& V=17
\end{aligned}
$$

Problem XXVIII. . . (Midterm Exam 372/04)

Modify the program so that it allows the expression to contain variables. Variable values should be taken from an environment (a list of variable/value pairs), like this:

$$
\begin{aligned}
& ?-\operatorname{eval}([x=3, y=4], x * y+5, V) \\
& \quad V=17 \\
& ?-\operatorname{eval}([x=3], x * y+5, V) \\
& \quad \text { no }
\end{aligned}
$$

Problem XXIX (Midterm Exam 372/04)

Write a predicate mult which, for all pairs of numbers between 0 and 9, adds their product to the Prolog database. I.e., the following facts should be asserted:

$$
\begin{array}{ll}
\operatorname{times}(0,0,0) . & \% 0 * 0=0 \\
\operatorname{times}(0,1,0) . & \% 0 * 1=0 \\
\ldots & \\
\operatorname{times}(9,7,63) . & \% 9 * 7=63 \\
\operatorname{times}(9,8,72) . & \% 9 * 8=72 \\
\operatorname{times}(9,9,81) . & \% 9 * 9=81
\end{array}
$$

The interaction should be as follows:

$$
\begin{aligned}
& ?-\text { times }(5,5, X) . \\
& \text { no } \\
& ?-\text { mult. } \\
& \text { yes } \\
& ?-\text { times }(5,5, X) . \\
& X=25
\end{aligned}
$$

Problem XXX (Midterm Exam 372/04)

Use a $2 n d$-order-predicate to write a predicate alltimes(L) which, given the times ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) database above produces a list of all the multiplication facts:

```
?- alltimes(L).
L = [1*1=2,1*2=2,1*3=3,\ldots,9*9=81].
```


Problem XXXI (Midterm Exam 372/04)

Show the results (yes/no) and resulting variable bindings for the following queries:
a) ?- $f(g(X, X), h(Y, Y))=f(g(Z), Z)$.
b) ?- $f(g(X, X), h(Y, Y))=f(g(h(W, a), Z), Z)$.
c) ?- $f\left(g(X, X), h\left(H_{-}\right)\right)=f(g(h(W, a), Z), Z)$.
d) ?- $f(x(A, B), C)=f(C, x(B, A))$.

Problem XXXII (Final Exam 372/04)

Given this Prolog predicate definition
mystery(L, B) :-
member (X, L),
append (A, [X], L),
append (B,C,A),
length (B,BL), length(C,CL),
BL > CL.
what does the query
| ?- mystery([1,2,3,4,5],C), write(C), nl, fail. print?

