CSc 372

Comparative Programming Languages

32 : Prolog - Second-Order Predicates

Department of Computer Science University of Arizona

Second-Order Programming

Second-Order Predicates

- When we ask a question in Prolog we will (if everything goes right) get an answer. One answer. We can if we want to ask Prolog to backtrack (using the semi-colon), but we will still only get one answer at a time.
- Furthermore, when we backtrack all the information gathered previously is lost.
- It isn't possible (in pure Prolog) to find the set of all possible solutions to a query.
- However, if we go outside pure Prolog (using the database manipulation features) we can construct procedures which collect all solutions to a query.
- They are called second-order because they deal with sets and the properties of sets, rather than about individual elements of sets.

Second-Order Predicates

- setof (X, Goal,List)
- List is a collection of Xs for which Goal is true.
- List is sorted and contains no duplicates.
- bagof (X, Goal,List)
- List is may contain duplicates.
- setof and bagof will fail if no Goals succeed.
- findall (X, Goal,List)
- findall will return [] if no Goals succeed.

Examples

remove_duplicates(X, Y) :setof (M, member (M,X), Y).
children(X,Kids) :setof(C, father(X,C), Kids).

Uninstantiated Variables

- Consider setof(X,Goal,List) and bagof(X,Goal,List).
- If there are uninstantiated variables in Goal which do not also appear in X, then a call to setof or bagof may backtrack, generating alternative values for List.
- If this is not the behavior you want, you can say

Y ~ Goal
meaning there exists a Y such that Goal is true, where Y is some Prolog term (usually, a variable).

- findall does this automatically.

Uninstantiated Variables. . .

- Consider this database:

```
foo(1,a).
foo(2,b).
foo(3,c).
```

- If we use both arguments of foo in our goal, we get what we expect:

$$
\begin{aligned}
\mid & ?-\text { findall }(X / Y, f o o(X, Y), L) . \\
L & =[1 / a, 2 / b, 3 / c] \\
\mid & ?-\operatorname{setof}(X / Y, \text { foo }(X, Y), L) . \\
L & =[1 / a, 2 / b, 3 / c] \\
\mid & ?-\quad \text { bagof }(X / Y, \text { foo }(X, Y), L) . \\
L & =[1 / a, 2 / b, 3 / c]
\end{aligned}
$$

Uninstantiated Variables. . .

- If we only use one of foo's arguments in our goal, findall still gets us the expected result:

$$
\begin{aligned}
& \text { I ?- findall }(X, f \circ o(X, Y), L) . \\
& L=[1,2,3]
\end{aligned}
$$

- But, bagof doesn't:

$$
\begin{aligned}
& \mathrm{l} \text { ?- bagof }(\mathrm{X}, \mathrm{foo}(\mathrm{X}, \mathrm{Y}), \mathrm{L}) . \\
& \mathrm{L}=[1] \\
& \mathrm{Y}=\mathrm{a} \text { ? } ; \\
& \mathrm{L}=[2] \\
& \mathrm{Y}=\mathrm{b} \text { ? } ; \\
& \mathrm{L}=[3] \\
& \mathrm{Y}=\mathrm{c} \\
& \mathrm{~L}=[1,2,3]
\end{aligned}
$$

Uninstantiated Variables. . .

- So, instead we have to do:

$$
\begin{aligned}
& \text { I ?- bagof }\left(X, Y^{\wedge} f \circ o(X, Y), L\right) . \\
& L=[1,2,3]
\end{aligned}
$$

SetOf - Drinkers

:- op(500, yfx, 'drinks').
john drinks whiskey.
martin drinks whiskey.
david drinks milk.
ben drinks milk.
helder drinks beer.
laurence drinks beer.
chris drinks coke.
louise drinks l_and_p.
?- setof(X, X drinks milk, S).
X = _9109,
S = [ben,david]

Implementing bagof

```
bagof(Item, Goal, _) :-
    assert(bag(marker)),
    Goal,
    assert(bag(Item)),
    fail.
```

bagof(_, _, Bag) :retract(bag(Item)), collect(Item, [], Bag).
collect(marker, L, L).
collect(Item,ThisBag,FinalBag):retract (bag (NextItem)), collect (NextItem, [Item|ThisBag], FinalBag).

Implementing setof

- setof is implemented as a call to bagof followed by a call to sort which puts the elements in order and removes duplicates.

Lee's Algorithm

Lee's Algorithm

We are bext going to look a more involved example, an application from VLSI design. It uses the setof predicate to compute a shortest path between two points on a grid, subject to the conditions that
(1) The path goes in the east-west-north-south direction only.
(2) The path doesn't touch any obstacles.

- VLSI routing on a grid.
- Find a shortest Manhattan route between A and B that doesn't pass through any obstacles.

lee_route(A,B,Obstacles,Path) :waves(B, [[A], []],Obstacles, Waves), path(A,B,Waves,Path).
?- lee_route ($1-1,5-5$, [obst ($2-3,4-5$), obst(6-6, 8-8)], P).

Lee's Algorithm. . .

Lee's algorithm works in two stages:
(1) First we generate a sequence of waves, where the first wave consists of the starting point itself.
(2) Then we use the set of waves to find a shortest path.

Lee's Algorithm. . .

- We start out with one wave which consists solely of the source point.
- From that point we generate all neighboring points. This forms the second wave.
- Each wave consists of points which are
(1) neighbors to points on the previous wave,
(2) not members of previous waves,
(3) not obstructed by any obstacles.
- We stop when the destination point is on the last generated wave.

LastW = []
Wave $=[1-1]$
NextW $=[0-1,1-0,1-2,2-1]$

LastW = [1-1]
Wave $=[0-1,1-0,1-2,2-1]$
NextW $=[0-0,0-2,1-3,2-0,2-2,3-1]$

LastW = [0-1,1-0,1-2,2-1]
Wave $=[0-0,0-2,1-3,2-0,2-2,3-1]$
NextW $=[0-3,1-4,3-0,3-2,4-1]$

Lee's Algorithm. . .

waves (Destination,Wavessofar,Obstacles,Waves) :Waves is a list of waves including Wavessofar (except, perhaps, it's last wave) that leads to Destination without crossing . Obstacles.
next_waves (Wave, LastWave, Obstacles, NextWave) :Nextwave is the set of admissible points from Wave, that is excluding points from Lastwave, Wave, and points under Obstacles.

Lee's Algorithm. . .

- The first wave-rule (the recursive base case for wave) states that once the last generated wave contains the destination point, we're done generating waves.
- The second wave-rule simply generates the next wave (using next_wave), and then adds it to the beginning of the list of waves. Note that the list of waves is a list-of-lists.

Lee's Algorithm. . .

- next_wave takes three input parameters:
(1) Wave is the last generated wave.
(2) LastWave is the wave generated before the last wave.
(3) Obstacels is the list of obstacles.
- next_wave uses setof to generate the set of all admissible points. A point is admissible if it belongs to the next wave.

Lee's Algorithm. . .

waves(B, [Wave|Waves], Obstacles, Waves) :member (B,Wave), !.
waves(B,[Wave,LastWave|LastWaves], Obstacles,Waves) :-
next_wave(Wave,LastWave,Obstacles,NextWave), waves (B, [NextWave, Wave, LastWave|LastWaves], Obstacles,Waves).
next_wave(Wave,LastWave,Obstacles,NextWave) :setof(X, admissible(X,Wave, LastWave, Obstacles), NextWave).

Lee's Algorithm. . .

X is adjacent to the points on Wave (i.e. X is a point on the next wave) if

- X is a neighbor to a point X 1 on the previous wave (Wave, that is).
- X is not obstructed by an obstacle.

Lee's Algorithm. . .

Notice that adjacent uses a generate-and-test scheme:
(1) member \& neighbor work together to generate new possible points:
(1) member generates points on the previous wave.
(2) neighbor uses the points generated by member to generate points which are neighbors to the points on the last wave.
(2) obstructed weeds out generated point that are under an obstacle.

Lee's Algorithm. . .

X is an admissible point if
(1) it is a neighbor of a point on the previous wave
(2) it is not on any previous wave
(3) is is not obstructed by an obstacle
admissible(X,Wave,LastWave,Obst) :-
adjacent(X,Wave,Obst),
not member (X,LastWave),
not member (X,Wave).
adjacent(X,Wave,Obstacles) :-
member (X1,Wave),
neighbor (X1,X),
not obstructed(X,Obstacles).

Lee's Algorithm. . .

- next_to takes a number A and returns $\mathrm{B}=\mathrm{A}+1$ and $\mathrm{B}=\mathrm{A}-1$. A-1 is returned only if the result is >0.
- neighbor uses next_to to generate neighboring points. The rules of neighbor state:
(1) The point $\mathrm{X} 2-\mathrm{Y}$ is a neighbor of point $\mathrm{X} 1-\mathrm{Y}$ if X 2 is $\mathrm{X} 1+1$, or $\mathrm{X} 2=\mathrm{X} 1-1$. In other words, the first neighbor rule generates the points immediately above and below a given point.
(2) The point $\mathrm{X}-\mathrm{Y} 2$ is a neighbor of point $\mathrm{X}-\mathrm{Y} 1$ if Y 2 is $\mathrm{Y} 1+1$, or $\mathrm{Y} 2=\mathrm{Y} 1-1$. In other words, the second neighbor rule generates the points immediately to the left and right of a given point.

```
neighbor(X1-Y,X2-Y):- next_to(X1,X2).
neighbor(X-Y1,X-Y2):- next_to(Y1,Y2).
```

next_to (A,B) :- B is $\mathrm{A}+1$.
next_to(A, B) :- $A>0, B$ is $A-1$.

Lee's Algorithm. . .

- obstructed(Point,Obstacles) checks to see if the point is on the perimeter of any of the obstacles in the list of obstacles Obstacles.
- The rule obstructs(Point, Obstacle) checks to see if the point is on the perimeter of the obstacle.

Note that obstructed is another generate-and-test procedure. member generates one obstacle at a time from this list, and obstructs checks to see if that obstacle obstructs the point.

Lee's Algorithm. . .

- obstructed(Point,Obstacles) checks to see if the point is on the perimeter of any of the obstacles in the list of obstacles Obstacles.
- The rule obstructs(Point, Obstacle) checks to see if the point is on the perimeter of the obstacle.

Note that obstructed is another generate-and-test procedure. member generates one obstacle at a time from this list, and obstructs checks to see if that obstacle obstructs the point.
\% Generate an obstacle, then test
\% if it obstructs a point Pt.
obstructed(Pt,Obsts) :-
member (Obst,Obsts), obstructs(Pt,Obst).
obstructs(X-Y,obst(X-Y1,X2-Y2)) :-

$$
\mathrm{Y} 1=<\mathrm{Y}, \mathrm{Y}=<\mathrm{Y} 2 . \quad \% \mathrm{X}-\mathrm{Y} \text { on bottom edge. }
$$

obstructs(X-Y,obst(X1-Y1,X-Y2)) :- Y1=<Y,Y=<Y2.
obstructs(X-Y,obst(X1-Y,X2-Y2)) :- X1=<X,X=<X2.
obstructs(X-Y,obst(X1-Y1,X2-Y)) :- X1=<X,X=<X2.

- Why do we only need to check the perimeter? Shouldn't we have to check if a point lies inside an object as well?
- No, such points will never be considered. Their neighbors (which are on a perimeter) cannot be on a previous wave:

Lee's Algorithm. . .

The last part of the algorithm is to construct the actual path from the list of waves. The procedure path does this for us.
(1) path starts by looking in the last wave for a neighbor of the destination node. In our example, the destination node is 5-5, and a neighbor of 5-5 in the last wave is the node 5-4.
(2) path next looks for a neighbor for the new node in the next wave. Our example yields node 5-3 which is a neighbor of node 5-4.
(3) Eventually we'll get to the last wave which only contains the source node, in our case node 1-1.

Lee's Algorithm. . .

$$
\begin{aligned}
\text { Waves }= & {[[0-7,1-8,2-7,3-6,5-4,6-3,7-0,7-2,8-1],} \\
& {[0-6,1-7,2-6,5-3,6-0,6-2,7-1], } \\
& {[0-5,1-6,5-0,5-2], 6-1], } \\
& {[0-4,1-5,4-0,4-2,5-1], } \\
& {[0-3,1-4,3-0,3-2,4-1], } \\
& {[0-0,0-2,1-3,2-0,2-2,3-1], } \\
& {[0-1,1-0,1-2,2-1], } \\
& {[1-1]] }
\end{aligned}
$$

path(A,A,Waves, [A]) :- !.
path(A,B,[Wave|Waves], [B|Path]) :-
member (B1, Wave),
neighbor (B,B1), !,
path (A,B1,Waves, Path).

Readings and References

- Read Clocksin \& Mellish, pp. 156--158.
homework

Exercise

Write Prolog predicates that given a database of countries and cities
\% country(name, population, capital). country(sweden, 8823, stockholm). country(usa, 221000, washington). country(france, 56000, paris). \% city(name, in_country, population). city(lund, sweden, 88). city(paris, usa, 1). \% Paris, Texas.

Exercise. . .

answer the following queries:
(1) Which countries have cities with the same name as capitals of other countries?
(2) In how many countries do more than $\frac{1}{3}$ of the population live in the capital?
(3) Which capitals have a population more than 3 times larger than that of the secondmost populous city?

