CSc 372
Comparative Programming Languages

34 : Scheme — Introduction

Department of Computer Science
University of Arizona

Copyright (© 2013 Christian Collberg

collberg@gmail.com

Background

(]

Scheme is based on LISP which was developed by John
McCarthy in the mid 50s.

@ LISP stands for LISt Processing, not Lots of Irritating Silly
Parentheses.

Functions and data share the same representation:
S-Expressions.

[

A basic LISP implementation needs six functions cons, car,
cdr, equal, atom, cond.

Scheme was developed by Sussman and Steele in 1975.

2/27

S-Expressions

@ An S-Expression is a balanced list of parentheses.

More formally, an S-expression is

O a literal (i.e., number, boolean, symbol, character, string, or
empty list).

@ a list of s-expressions.

@ Literals are sometimes called atoms.

3/27

S-Expressions — Examples

Legal Illegal

66

O (

(4 5) ()
00

((5)) @ (5

O0))

((4 5) (6 (7))

4/27

S-Expressions as Trees

@ An S-expression can be seen as a linear representation of
tree-structure:

o
2
I (6) ‘/\' (3 4)
6

5/27

S-Expressions as Function Calls

@ A special case of an S-expression is when the first element of
a list is a function name.

@ Such an expression can be evaluated.

> (+ 4 5)

9

> (add-five-to-my-argument 20)
25

> (draw-a-circle 20 45)

#t

6/27

S-Expressions as Functions

@ As we will see, function definitions are also S-expressions:

(define (farenheit—2—celsius f)

(+ (- f 32) 5/9)
)

@ So, Scheme really only has one syntactic structure, the
S-expression, and that is used as a data-structure (to
represent lists, trees, etc), as function definitions, and as
function calls.

7/27

Function Application

@ In general, a function application is written like this:

(operator arg; arg, ... arg,)

@ The evaluation proceeds as follows:

© Evaluate operator. The result should be a function F.
@ Evaluate

arg;, arg,, ... arg,
to get

val;, valy, ... val,

© Apply F to valy, valy, ... valy,.

8/27

Function Application — Examples

> (+ 4 5)

> (+ (+ 5 6) 3)
14
> 7

> (4 5 6)

eval: 4 is not a function
> #t

#t

9/27

Atoms — Numbers

Scheme has
@ Fractions (5/9)
@ Integers (5435)
@ Complex numbers (5+21)
@ Inexact reals (#1i3.14159265)

> (+ 5 4)

9

> (+ (x 5 4) 3)
23

> (+ 5/9 4/6)
1.2

> 5/9

0.5

10/27

Atoms — Numbers. ..

> (+ 5/9 8/18)

1

> B+2i

5+2i

> (+ 5+2i 3-i)

8+11i

> (x 236542164521634 3746573426573425643)
886222587860913289285513763860662
> pi

#13.141592653589793

> e

#12.718281828459045

> (x 2 pi)

#16.283185307179586

11/27

Atoms — Numbers. ..

@ Scheme tries to do arithmetic exactly, as much as possible.

@ Any computations that depend on an inexact value becomes
inexact.

@ Scheme has many builtin mathematical functions:

> (sqrt 16)

4

> (sqrt 2)
#i1.4142135623730951
> (sin 45)
#10.8509035245341184
> (sin (/ pi 2))
#i1.0

12/27

Atoms — Strings

@ A string is enclosed in double quotes.

> (display "hello")

hello

> "hello"

"hello"

> (string-length "hello")

5

> (string-append "hello" " " "world!")
"hello world!"

13/27

Atoms — Booleans

@ true is written #t.

@ false is written #f.

> #t

true

> #f

false

> (display #t)
#t

> (not #t)
false

14/27

Identifiers

@ Unlike languages like C and Java, Scheme allows identifiers to
contain special characters, such as
' $%&*x+-. /: <=>7 @ _ " . l|dentifiers
should not begin with a character that can begin a number.

@ This is a consequence of Scheme's simple syntax.

@ You couldn't do this in Java because then there would be
many ways to interpret the expression X-5+Y.

Legal ‘IHegaI
h-e-1-1-0

. 3some
give-me!
WTF? -stance

15/27

Defining Variables

@ define binds an expression to a global name:

(define name expression)
(define PI 3.14)

> PI
3.14

(define High-School-PI (/ 22 7))

> High-School-PI
3.142857

16/27

Defining Functions

@ define binds an expression to a global name:
(define (name arg; argp ...) ezpression)

® arg; argy ... are formal function parameters.
(define (f) ’hello)

> (f)
hello

(define (square x) (* x x))

> (square 3)
9

17/27

Defining Helper Functions

@ A Scheme program consists of a large number of functions.

@ A function typically is defined by calling other functions, so
called helper or auxiliary functions.

(define (square x) (* x x))
(define (cube x) (* x (square x)))

> (cube 3)
27

18/27

Preventing Evaluation

@ Sometimes you don’'t want an expression to be evaluated.

@ For example, you may want to think of (4 4 5) as a list of

three elements +, 4, and 5, rather than as the computed value
9.

o (quote (4 4 5)) prevents (+ 4 5) from being evaluated.
You can also write '(+ 4 5).

> (display (+ 4 5))

9
> (display (quote (+ 4 5)))
(+ 4 5)

> (display ’(+ 4 5))
(+ 4 5)

19/27

Dr Scheme

@ Download DrScheme from here: netp://wm.arschene. org.

@ It has already been installed for you in lectura and the
Windows machines in the lab.

@ Start DrScheme under unix (on lectura) by saying
> drscheme

@ On Windows and MacOS it may be enough to click on the
DrScheme logo to start it up.

20/27

http://www.drscheme.org

Dr Scheme

= luntid & BICIE}
Save — File Edit View Lapguage Scheme Special Hel
s T payage peLy P
jefinitions ot 5]
% e “,}Stepl Q, Check Syntaxl }Runl OSmpl
(definé (f2c £) A

¥ 4- £ 32) -5/9)

define PI 3.14)

Sel ect (define PI2 (+ 1 2.14))

! (define (square x) (* x x))
anguage (define (cube x) (* x (square x)))
evel

Add

' eachpacks

e

=

Welcome to DrScheme, v:érs/hnﬁ
Language: Advanced Studént.

> (cube 3)
27
=

/

Definitio
wi ndow

Language
| evel

Interacti
w ndow

21/27

Dr Scheme — Using TeachPacks

EEE

- DrScheme "

File Edit View Language Scheme Special Help

(o) i siep| | QL check synan| | Run| @51
5|

> (start 300 300) X
true
> (draw-circle (make-posn 50 50) 20)
true J
> | |
= 1
8:2 Read{WriteD not running
[=l[e]ix] 7
Select a Teachpack
O Lgiblplfeachpack/dol
[5 [crowatiss E
arow.ss
convert.ss
dir.ss
docs.ss
elevator.ss
graphing?.ss
graphing.ss
7 | mimee i ee /

erg/libfplt/teachpack/htdp/

that start with *." Cancel @

22/27

Dr Scheme — Using the Stepper

G progs.scm - DrScheme W8

S|

File Edit View Language Scheme

Special Help.

[progs. sam| Hsave

(define (f2c f)
(* (- £ 32) 5/9)

)
(define (c2f c)
(+ 32 (* c 9/5))

)
(c2f (f2c 32))

Q Check Syntax| 2°Run| @ Stop
B

Welcome to DrScheme
Language: Intermediat
32

>

s i, [==ixl
File Edit Help
Home| |< Application| < Step| Step>| Application >|
(define (f2¢c £} (* (- £ 32) 0.5)) B
(define (c2f ¢) (+ 32 (* ¢ 1.8)))
[(lambda [c) [(lambda [c)
[+ 32 (*c 1.8))] (+32 (*c 1.8)))
(E28 32)) ((lambda (f)
- *
(-_£ 32)
050
321)

23/27

References

Read Scott, pp. 523-527, 528-539.
Free interpreter: http://www.drscheme.org.

M anua | . http://www.swiss.ai.mit.edu/projects/scheme/documentation/scheme.html

e © ¢ ¢

Tutorials:

@ http://ai.uwaterloo.ca/"dale/cs486/s99/scheme-tutorial.html
@ http://cs.wwc.edu/%7Ecs_dept/KU/PR/Scheme.html

@ http://www.cis.upenn.edu/%7Eungar/CIS520/scheme-tutorial.html

@ http://dmoz.org/Computers/Programming/Languages/Lisp/Scheme

2427

http://www.drscheme.org
http://www.swiss.ai.mit.edu/projects/scheme/documentation/scheme.html
http://ai.uwaterloo.ca/~dale/cs486/s99/scheme-tutorial.html
http://cs.wwc.edu/%7Ecs_dept/KU/PR/Scheme.html
http://www.cis.upenn.edu/%7Eungar/CIS520/scheme-tutorial.html
http://dmoz.org/Computers/Programming/Languages/Lisp/Scheme

References. . .

@ Language reference manual:

http://www.swiss.ai.mit.edu/ftpdir/scheme-reports/rbrs.ps.

@ Some of this material is taken from
http://www.ecf .utoronto.ca/ gower/CSC326F/slides, ©Diana |nkpen 2002,
Suzanne Stevenson 2001.

25/27

http://www.swiss.ai.mit.edu/ftpdir/scheme-reports/r5rs.ps
http://www.ecf.utoronto.ca/~gower/CSC326F/slides

Scheme so Far

@ A function is defined by
(define (name arguments) expression)
@ A variable is defined by
(define name expression)
@ Strings are inclosed in double quotes, like "this". Common
operations on strings are
o (string-length string)
o (string-append list-of-strings)
@ Numbers can be exact integers, inexact reals, fractions, and
complex. Integers can get arbitrarily large.
@ Booleans are written #t and #f.

26/27

Scheme so Far. ..

@ An inexact number is written: #13.14159265.
@ Common operations on numbers are

o (+ argl arg?2), (- argl arg2)

@ (addl arg), (subl arg)

¢ (min argl arg2), (max argl arg?2)

@ A function application is written:
> (function-name arguments)
@ Quoting is used to prevent evaluation
(quote argument)
or

’argument

27/27

