CSc 372
Comparative Programming Languages

36 : Scheme — Conditional Expressions

Department of Computer Science
University of Arizona

Copyright (© 2013 Christian Collberg

collberg@gmail.com

Comparison Functions

@ Boolean functions (by convention) end with a ?.

@ We can discriminate between different kinds of numbers:

> (complex? 3+4i)

#t

(complex? 3)

#t

(real? 3)

#t

> (real? -2.5+0.0i)
#t

> (rational? 6/10)

A\

A\

2/26

Comparison Functions. . .

#t

> (rational? 6/3)
#t

> (integer? 3+0i)
#t

> (integer? 3.0)
#t

> (integer? 8/4)
#t

3/26

Tests on Numbers

@ Several of the comparison functions can take multiple
arguments.

@ (<456 7 9 234) returns true since the numbers are
monotonically increasing.

> (< 4 5)

true

> (45679 234)
true

> (>5213)
false
>(=11111)
true

> (k=122 2 3)
true

4/26

Tests on Numbers. . .

> (>= 5 b)

true

> (zero? 5)
false

> (positive? 5)
true

> (negative? 5)
false

> (odd? 5)

true

> (even? 5)
false

5/26

Conditionals — If

o If the test-expression evaluates to #f (False) return the
valuen of the then-expression, otherwise return the value
of the else-expression:

(if test-expression
then-expression
else-expression

)

@ Up to language level “Advanced Student” if-expressions must
have two parts.

@ Set the language level to Standard (R5RS) to get the
standard Scheme behavior, where the else-expression is
optional.

6/26

Conditionals — If. ..

(define x 5)
(if (= x 5) 2 4)

(if (< x 3)
(display "hello")
(display "bye"))
bye
> (display
(if (< x 3) "hello" "bye"))
bye

7/26

If it's not False (#£), it's True (#t)

@ Any value that is not false, is interpreted as true.

@ NOTE: In DrScheme this depends on which language level
you set. Up to “Advanced Student”, the test-expression
of an if must be either #t or #£.

@ Set the language level to Standard (R5RS) to get the
standard Scheme behavior:

> (if 5 "hello" "bye")
"hello"

> (if #f "hello" "bye")
Ilbyell

> (if #f "hello")

> (if #t "hello")
"hello"

8/26

Boolean Operators

@ and and or can take multiple arguments.
@ and returns true if none of its arguments evaluate to False.

@ or returns true if any of its arguments evaluates to True.

> (and (< 3 5) (0odd? 5) (inexact? (cos 32)))

#t

> (or (even? 5) (zero? (-5 5)))
#t

> (not 5)

#t

> (not #t)

#1

9/26

Boolean Operators. . .

@ In general, any value that is not #f is considered true

@ and and or evaluate their arguments from left to right, and
stop as soon as they know the final result.

@ The last value evaluated is the one returned.

> (and "hello")

"hello"

> (and "hello" "world")
"world"

> (or "hello" "world")
"hello"

10/26

Defining Boolean Functions

@ We can define our own boolean functions:

(define (big-number? mn)
(> n 10000000)
)

> (big-number? 5)
#t
> (big-number? 384783274832748327)

#t >

11/26

Conditionals — cond

@ cond is a generalization of if:

(cond
(cond-expression; result-expressiony)
(cond-expressiony result-expressiony)

(else else-ezpression))

@ Each cond-expression; is evaluated in turn, until one
evaluates to not False.

> (cond
((<23) 4
((=23) 5)
(else 6))

4

12/26

Conditionals — cond. ..

@ To make this a bit more readable, we use square brackets

around the cond-clauses:
(cond
[cond-ezpr; result-ezpr]
[cond-ezpry result-exprs]

[else else-expression])

> (cond [#f 5] [#t 6])
6
> (cond
[(= 4 5) "hello"]
[(> 4 5) "goodbye"]
[(< 4 5) "see ya!"])
"see ya!"

13/26

Conditionals — case

@ case is like Java/C's switch statment:

(case key
[Cexpr; expry ...) result-ezpri]
[Cexpriy expri; ...) result-exzpry]

(else else-expr))
@ The key is evaluated once, and compared against each
cond-expr in turn, and the corresponding result-expr is
returned.

> (case 5 [(2 3) "hello"] [(4 5) "bye"l)
"bye"

14/26

Conditionals — case. ..

(define (classify n)
(case n
[(2 4 8 16 32) "small power of 2"]
[(2 357 11) "small prime number"]
[else "some other number"]

)
> (classify 4)
"small power of 2"
> (classify 3)
"small prime number"
> (classify 2)
"small power of 2"
> (classify 32476)
"some other number"

15/26

Sequencing

@ To do more than one thing in sequence, use begin:

(begin arg; argy ...)

> (begin
(display "the meaning of life=")
(display (x 6 7))
(newline)

)
the meaning of life=42

16/26

Examples — In

@ Write the factorial function !n:

(define (! n)
(cond
[(zero? n) 1]
[else (xn (! (-n 1))N]

> (1 5)
120

17/26

Examples — ('r’)

° VVHtethe(f)funcﬂonin Scheme:

() = o

@ Use the factorial function from the last slide

(define (choose n r)

(/ (' n) (+xC) ((-nn))))
)

> (choose 5 2)
10

18/26

Examples — (sum m n)

@ Write a function (sum m n) that returns the sum of the
integers between m and n, inclusive.

(define (sum m n)
(cond
[(=mn) m]

[else (+ m (sum (+ 1 m) n))]

> (sum 1 2)
3
> (sum 1 4)
10

19/26

Examples — Ackermann's function

@ Implement Ackermann’s function:

Alj) = 2jforj>1
A(i,1) = A(i—1,2) fori>?2
A(’v./) A(’ - 17A(’?J - 1)) for ’7./ >2

(define (A i j)
(cond
[(and (=1 1) (=3 1)) (x 2 j)]
[(and (>=12) (=3 1)) (A (-1i1) 2)]
[(and (>=1 2) (>=3j 2))
A i) @aid¢jnni

20/26

Examples — Ackermann’s function. . .

@ Ackermann'’s function grows very quickly:

> (A1 1)

2

> (A 3 2)

512

> (A 3 3)
1561585988519419914804999641169225
4958731641184786755447122887443528
0601470939536037485963338068553800
6371637297210170750776562389313989
2867298012168192

21/26

Scheme so Far

@ Unlike languages like Java and C which are statically typed
(we describe in the program text what type each variable is)
Scheme is dynamically typed. We can test at runtime what
particular type of number an atom is:

o (complex? arg), (real? arg)

¢ (rational? arg), (integer? arg)
@ Tests on numbers:

o (< argl, arg2), (> argl, arg2)

¢ (= argl, arg2), (<= argl, arg2)

o (>= argl, arg2), (zero? arg)

o (positive? arg), (negative? arg)

o (0dd? arg), (even? arg)

22/26

Scheme so Far. ..

@ Unlike many other languages like Java which are
statement-oriented, Scheme is expression-oriented. That is,
every construct (even if, cond, etc) return a value. The
if-expression returns the value of the then-expr or the
else-expr:

(if test-expr then-expr else-expr)

depending on the value of the test-expr.

23/26

Scheme so Far. ..

@ The cond-expression evaluates its guards until one evaluates
to non-false. The corresponding value is returned:

(cond
(guard; valuep)
(guardy wvaluep)

(else else-expr))

24/26

Scheme so Far. ..

@ The case-expression evaluates key, finds the first matching
expression, and returns the corresponding result:

(case key
[Cexpr; expro ...) result-expr:]
[Cezpri1 ezpriy ...) result-ezpry]

(else else-ezpr))

25/26

Scheme so Far. ..

@ and and or take multiple arguments, evaluate their results
left-to-right until the outcome can be determined (for or
when the first non-false, for and when the first false is
found), and returns the last value evaluated.

26/26

