CSc 372
Comparative Programming Languages

38 : Scheme — List Processing

Department of Computer Science
University of Arizona

Copyright (© 2013 Christian Collberg



collberg@gmail.com

Constructing Lists

@ The most important data structure in Scheme is the list.
@ Lists are constructed using the function cons:
(cons first rest)

cons returns a list where the first element is first, followed
by the elements from the list rest.

> (cons ’a ’())

(a)

> (cons ’a (cons ’b *()))
(a b)

> (cons ’a (cons ’b (cons ’c ’())))
(a b c)

2/27



Constructing Lists. . .

@ There are a variety of short-hands for constructing lists.

@ Lists are heterogeneous, they can contain elements of
different types, including other lists.

>’(ab c)

(a b c)

> (list ’a ’b ’c)
(a b c)

> 2(1 a "hello")
(1 a "hello™)

3/27



Examining Lists

@ (car L) returns the first element of a list. Some
implementations also define this as (first L).

@ (cdr L) returns the list L, without the first element. Some
implementations also define this as (rest L).

@ Note that car and cdr do not destroy the list, just return its
parts.

> (car ’(a b c))
’a

> (cdr ’(a b c))
’(b ¢)

4/27



Examining Lists. . .

@ Note that (cdr L) always returns a list.

> (car (cdr ’(a b c)))

’b

> (cdr ’(a b ¢))

’(b ¢)

> (cdr (cdr ’(a b c)))

> (c)

> (cdr (cdr (cdr ’(a b c))))

0

> (cdr (cdr (cdr (cdr ’(a b c¢)))))
error

5/27



Examining Lists. . .

@ A shorthand has been developed for looking deep into a list:
(clist of "a" and "d"r L)
Each "a" stands for a car, each "d" for a cdr.

@ For example, (caddar L) stands for

(car (cdr (cdr (car L))))

> (cadr ’(a b c¢))
’b

> (cddr ’(a b c¢))
?(c)

> (caddr ’(a b c¢))
’c

6/27



Lists of Lists

@ Any S-expression is a valid list in Scheme.

@ That is, lists can contain lists, which can contain lists, which...

> ’(a (b ¢))

(a (b c))

> ?(1 "hello" ("bye" 1/4 (apple)))

(1 "hello" ("bye" 1/4 (apple)))

> (caaddr ’(1 "hello" ("bye" 1/4 (apple))))
llbyell

7/27



List Equivalence

® (equal? L1 L2) does a structural comparison of two lists,
returning #t if they “look the same”.

@ (eqv? L1 L2) does a “pointer comparison”, returning #t if
two lists are “the same object”.

> (eqv? ’(abc) ’(abc))

false
> (equal? ’(abc) ’(abc))

true

8/27



List Equivalence. ..

@ This is sometimes referred to as deep equivalence vs.
shallow equivalence.

> (define myList ’(a b ¢))

> (eqv? myList myList)

true

> (eqv? ’(a (b c (D)) ’(a (b c (d))))
false

> (equal? ’(a (b c (d))) ’(a (b c (d)))
true

9/27



Predicates on Lists

@ (null? L) returns #t for an empty list.

@ (1ist? L) returns #t if the argument is a list.

> (null? Q)

#t

> (null? ’(a b c))
#f

> (1list? ’(a b c¢))
#t

> (1list? "(a b ")
#f

10/27



List Functions — Examples. . .

> (memq ’z ’(x y z w))
#t

> (car (cdr (car ’((a) b (c d)))))
(c d)

> (caddr ’((a) b (c d)))
(c d)

> (cons ’a ’())

(a)

> (cons ’d ’(e))

d e)

> (cons ’(a b) ’(c d))
((a b) (c d))

11/27



Recursion over Lists — cdr-recursion

@ Compute the length of a list.

@ This is called cdr-recursion.

(define (length x)
(cond
[(null? x) 0]
[else (+ 1 (length (cdr x)))]

)
> (length ’(1 2 3))
3

> (length ’(a (b c) (d e £)))
3

12/27



Recursion over Lists — car-cdr-recursion

@ Count the number of atoms in an S-expression.
@ This is called car-cdr-recursion .

(define (atomcount x)

(cond
[(null? x) 0]
[(1list? x)

(+ (atomcount (car x))
(atomcount (cdr x)))]

[else 1]

))

(atomcount ’ (1))

>
1
> (atomcount ’("hello" a b (c 1 (d))))
6

13/27



Recursion Over Lists — Returning a List

@ Map a list of numbers to a new list of their absolute values.

@ In the previous examples we returned an atom — here we're
mapping a list to a new list.

(define (abs-list L)
(cond
[((null? L) ’ QO]
[else (cons (abs (car L))
(abs-list (cdr L)))]

> (abs-list (1 -1 2 -3 5))
(112365)

14/27



Recursion Over Two Lists

@ (atom-list-eq? L1 L2) returns #t if L1 and L2 are the
same list of atoms.

(define (atom-list-eq? L1 L2)
(cond

[(and (null? L1) (null? L2)) #t]

[(or (null? L1) (null? L2)) #f]

[else (and
(atom? (car L1))
(atom? (car L2))
(eqv? (car L1) (car L2))
(atom-list-eq? (cdr L1) (cdr L2)))]

15/27



Recursion Over Two Lists. . .

> (atom-list-eq? (1 2 3) (1 2 3))
#t
> (atom-list-eq? ’(1 2 3) (1 2 a))
#f

16/27



(define (append L1 L2)
(cond
[(null? L1) L2]
[else
(cons (car L1)
(append (cdr L1) L2))]

)

> (append ’ (1 2) ’(3 4))
(1234

> (append > () ’(3 4))

(3 4

> (append ’(1 2) *())
12

17/27



Deep Recursion — equal?

(define (equal? x y)
(or (and (atom? x) (atom? y) (eq? x y))
(and (not (atom? x))
(not (atom? y))
(equal? (car x) (car y))
(equal? (cdr x) (cdr y)))))

> (equal? ’a ’a)

#t

> (equal? ’(a) ’(a))

#t

> (equal? ’((a)) ’((a)))
#t

18/27



Patterns of Recursion — cdr-recursion

@ We process the elements of the list one at a time.

@ Nested lists are not descended into.

(define (fun L)
(cond
[(null? L) return-value]
[else ...(car L) ...(fun (cdr L)) ...]

19/27



Patterns of Recursion — car-cdr-recursion

@ We descend into nested lists, processing every atom.

(define (fun x)
(cond
[(null? x) return-value]
[(atom? x) return-value]
[(1ist? x)
.. (fun (car x))
..(fun (cdr x)) ...]
[else return-value]

)

20/27



Patterns of Recursion — Maps

@ Here we map one list to another.

(define (map L)

(cond
[(null? L) ° Q)]
[else (cons (...(car L) ...)
(map (cdr L)))]
)

21/27



Example: Binary Trees

@ A binary tree can be represented as nested lists:

@@ 20 O 650 0) O
@ Each node is represented by a triple

(data left-subtree right-subtree)

@ Empty subtrees are represented by ().

22/27



Example: Binary Trees. ..

(define (key tree) (car tree))
(define (left tree) (cadr tree))
(define (right tree) (caddr tree))

(define (print-spaces N)
(cond
[(=N0) ""]
[else (begin
(display " ")
(print-spaces (- N 1))))))

(define (print-tree tree)
(print-tree-rec tree 0))

23/27



Example: Binary Trees. ..

(define (print-tree-rec tree D)
(cond
[(null? tree)]
[else (begin
(print-spaces D)
(display (key tree)) (newline)
(print-tree-rec (left tree) (+ D 1))
(print-tree-rec (right tree) (+ D 1))
)1))

> (print-tree (4 (2 O O) (6 (5 O O) O)))
4

2

6

24/27



Binary Trees using Structures

@ We can use structures to define tree nodes.

(define-struct node (data left right))

(define (tree-member x T)
(cond
[(null? T) #£f]
[(= x (node-data T)) #t]
[(< x (node-data T))
(tree-member x (node-left T))]
[else
(tree-member x (node-right T))]

25/27



Binary Trees using Structures. . .

(define tree
(make-node 4
(make-node 2 () ’())
(make-node 6
(make-node 5 () ()
(make-node 9 () >()))))

> (tree-member 4 tree)
true

> (tree-member 5 tree)
true

> (tree-member 19 tree)
false

26/27



Homework

@ Write a function swapFirstTwo which swaps the first two
elements of a list. Example: (1 2 3 4) = (2 1 3 4).

@ Write a function swapTwoInLists which, given a list of lists,
forms a new list of all elements in all lists, with first two of
each swapped. Example: ((1 2 3) (4) (6 6)) = (213
4 6 5).

27/27



