CSc 372

Comparative Programming Languages

39 : Scheme — Higher-Order Functions

Department of Computer Science
University of Arizona

Copyright (© 2013 Christian Collberg

collberg@gmail.com

Higher-Order Functions

@ A function is higher-order if

@ it takes another function as an argument, or
@ it returns a function as its result.

@ Functional programs make extensive use of higher-order
functions to make programs smaller and more elegant.

@ We use higher-order functions to encapsulate common
patterns of computation.

2/13

Higher-Order Functions: map

@ Map a list of numbers to a new list of their absolute values.

@ Here's the definition of abs-1ist from a previous lecture:

(define (abs-list L)
(cond
[((null? L) ’ QO]
[else (cons (abs (car L))
(abs-list (cdr L)))]

> (abs-list (1 -1 2 -3 5))
(112365)

3/13

Higher-Order Functions: map. ..

@ This type of computation is very common.
@ Scheme therefore has a built-in function
(map £ L)

which constructs a new list by applying the function f to
every element of the list L.

(map f ’(e; & e3 e))
N8
(£ &) (f &) (£ e3) (£ &)))

4/13

Higher-Order Functions: map. ..

@ map is a higher-order function, i.e. it takes another function
as an argument.

(define (addone a) (+ 1 a))

> (map addone ’(1 2 3)
(2 3 4

> (map abs ’(-1 2 -3))
(12 3)

5/13

Higher-Order Functions: map. ..

@ We can easily define map ourselves:

(define (mymap f L)
(cond
[(null? L) Q)]
[else
(cons (f (car L)) (mymap f (cdr L)))]))

> (mymap abs ’(-1 2 -3))
(12 3)

6/13

Higher-Order Functions: map. ..

@ If the function takes n arguments, we give map n lists of
arguments:

> (map string-append
7(IIAII IIBII IICII) J(lllll II2II IIBII))
(IIAlII IIBQII IICBII)

> (map + (1 2 3) (1 2 3))
(list 2 4 6)

> (map cons ’(a b c) ’((1) (2) (3)))
((a 1) (b 2) (c 3))

7/13

Lambda Expressions

@ A lambda-expression evaluates to a function:
(lambda (x) (* x X))
x is the function’s formal parameter.

@ Lambda-expressions don't give the function a name — they're
anonymous functions.

@ Evaluating the function:

> ((lambda (x) (x x x)) 3)
9

8/13

Higher-Order Functions: map. ..

@ We can use lambda-expressions to construct anonymous
functions to pass to map. This saves us from having to define

auxiliary functions:

(define (addone a) (+ 1 a))

> (map addone ’(1 2 3)
(2 3 4)

> (map (lambda (a) (+ 1 a)) ’(1 2 3))
(2 3 4)

9/13

Higher-Order Functions: filter

@ The filter-function applies a predicate (boolean-valued
function) p to all the elements of a list.

@ A new list is returned consisting of those elements for which p
returns #t.

(define (filter p L)
(cond
[(qull? L) ’ QO]
[(p (car L))
(cons (car L) (filter p (cdr L)))]
[else (filter p (cdr L))1))

> (filter (lambda (x) (> x 0)) ’(1 -2 3 -4))
1 3)

10/13

Higher-Order Functions: fold

Consider the following two functions:

(define (sum L)
(cond
[(null? L) 0]
[else (+ (car L) (sum (cdr L)))1))
(define (concat L)
(cond
[(qull? L) ""]
[else (string-append (car L) (concat (cdr L)))]))

> (sum ’(1 2 3))

6

> (Concat 7("1" "2" "3"))
||123||

11/13

Higher-Order Functions: fold...

@ The two functions only differ in what operations they apply
(+ vs. string-append, and in the value returned for the base
case (0 vs. "").

@ The fold function abstracts this computation:

(define (fold L f n)
(cond
[(qull? L) n]
[else (f (car L) (fold (cdr L) f n))]1))

> (fold ’(1 2 3) + 0)

6

> (fOld ;(uAu "p" IICII) string—append uu)
"ABC"

12/13

Higher-Order Functions: fold

@ In other words, fold folds a list together by successively
applying the function f to the elements of the list L.

(apply f ’(e1 & & e)) =
(f 1 (f &0 (f e3 €4)))

13/13

