CSc 372
Comparative Programming Languages

40 : Scheme — Metacircular Interpretation

Department of Computer Science
University of Arizona

Copyright (© 2013 Christian Collberg



collberg@gmail.com

Introduction

@ In this lecture I'm going to show how you can define Scheme
by writing a metacircular interpreter for the language, i.e. an
interpreter for Scheme written in Scheme.

@ Before we can do that, we first need to learn a few more this
about the language

2/32



Let Expressions

@ A let-expression binds names to values:
(let ((name; value;) (namep; valuep) ...)
eTpression)

@ The first argument to let is a list of (name value) pairs.
The second argument is the expression to evaluate.

> (let ((a 3) (b 4) (square (lambda (x)(* x x)))
(plus +))
(sqrt (plus (square a) (square b))))
5.0

3/32



Let Expressions. ..

@ Let-expressions can be nested:

> (let ((x 5) (c 4))
(let ((v (x 4 %))
(t (x 2 ¢c)))
(+ v t)))
28

4/32



Imperative Features

@ Scheme is an impure functional language.
@ l.e., Scheme has imperative features.

@ l.e., in Scheme it is possible to program with side-effects.

(set! war walue) Change the value of var to value.

(set-car! war value) Change the car-field of the cons-cell
var to value.

(set-cdr! war walue) Change the cdr-field of the cons-cell
var to value.

5/32



Imperative Features. ..

o Example:

> (let ((x 2) (L °(a b))
(set! x 3)
(set-car! 1 ’(c d))
(set-cdr! 1 ’(e))
(display x) (newline)
(display 1) (newline))

3

((c d) e)

6/32



Dotted Pairs

@ S-expressions are constructed using dotted pairs.

@ It is implemented as a struct (called a cons-cell ) consisting
of two fields (the size of a machine word) called car and cdr.

@ We can manipulate these fields directly:

> . 2)

a. 2

> (cons "stacy’s" "mom")
("stacy’s" . "mom")

> . (2. 3))
a12. 3

> (cons 1 2)

a. 2

7/32



Dotted Pairs. . .

@ When the second part of a dottend pair (the cdr-field) is a
list, and the innermost cdr-field is the empty list, we get a

“normal” Scheme list:

> . O)

)

>2@ . @. 0N
12

> . (23)
(12 3)

8/32



Dotted Pairs. . .

@ We can use set-car! and set-cdr! to manipulate the fields
of a cons-cell directly:

> (define x (1 . 2))
> (set-car! x ’a)

> x

(a. 2)

> (set-cdr! x ’(2 3))
> X

(a 2 3)

9/32



Dotted Pairs. . .

@ (cons A B) can be thought of as first creating a cons-cell on

the heap (using malloc, for example), and then setting the
car and cdr fields to A and B, respectively:

> (define x (cons 0 0))
> X

o . 0

> (set-car! x ’1)

> (set-cdr! x ’())

> x

€]

10/32



Loops

Scheme's “for-loop” do takes these arguments:

@ A list of triples (var init update) which declares a variable var,
with an initial value init, and which gets updated using the
expression update, on each iteration;

@ A pair (termination_cond return_value) which gives the
termination condition and return value of the loop; and

© a loop body:

(do ((war!l 4nitl updatel)
(vari2 init2 updatel)

)
(termination_cond return_value)
loop_body

11/32



@ Sum the numbers 1 to 4, printing out intermediate results:

> (do ((i 1 (+ i 1))
(sum 0 (+ sum i)))

((= 1 5) sum)
(display sum)
(newline)

)

0

1

3

6

10

12/32



Association Lists

@ Association lists are simply lists of key-value pairs that can be
searched sequentially:
> (assoc ’bob ’((bob 22) (joe 32) (bob 3)))
(bob 22)
@ The list is searchedy the list from beginning to end, returning
the first pair with a matching key:
(assoc key alist) Search for key, compare using equal?.
(assq key alist) Search for key; compare using eq?.
(assv key alist) Search for key; compare using eqv?.

13/32



Association Lists. . .

> (define e ’((a 1) (b 2) (c 3)))

> (assq ’a e)

(a 1)

> (assq ’b e)

(b 2)

> (assq ’d e)

#f

> (assq (1list ’a) ’(((a)) ((b)) ((c))))
#f

> (assoc (list ’a) ’(((a)) ((b)) ((c))))
((a))

> (assv 5 ’((2 3) (5 7) (11 13)))

(57

14/32



Association Lists. . .

@ We can actually have more than one value:

> (assoc ’bob ’((bob 5 male)
(jane 32 ’female)))
(bob 5 male)

15/32



@ Apply returns the result of applying its first argument to its
second argument.

> (apply + (6 7))

13

> (apply max (2 5 1 7))
-

16/32



o (eval arg) evaluates its argument.

> (eval ’(+ 4 5))
9
> (eval ’(cons ’a (b c))) (a b c)

17/32



@ eval and quote are each other's inverses:

> (eval ’’(+ 4 5))

(+ 4 5)
> (eval (eval ’’(+ 4 B)))
9

> (eval (eval (eval ’’’(+ 4 5))))
9

18/32



Programs as Data

@ Scheme is homoiconic, self-representing, i.e. programs and
data are both represented the same (as S-expressions).

@ This allows us to write programs that generate programs -
useful in Al, for example.

(define x ’car)
(define y ’’(a b ¢))
(define p (list x y))
P

(car ’(a b c))

> (eval p)

a

vV V V V

19/32



Evaluation Order

@ So far, we have said that to evaluate an expression
(op argl arg2 arg3) we first evaluate the arguments, then
apply the operator op to the resulting values.

@ This is known as applicative-order evaluation.

o Example:

(define (double x) (* x x))

> (double (* 3 4))
= (double 12)
= (+ 12 12)
= 24

20/32



Evaluation Order. ..

@ This is not the only possible order of evaluation

@ In normal-order evaluation parameters to a function are
always passed unevaluated.

@ This sometimes leads to extra work:

(define (double x) (*x x x))

> (double (* 3 4))
= (+ (x 34) (x 3 4)))
= (+ 12 (x 3 4))
= (+ 12 12)
= 24

21/32



Evaluation Order. ..

@ Applicative-order can sometimes also lead to more work than
normal-order:

(define (switch x a b ¢)

(cond
((< x 0) a)
((=x 0) b)

(> x 0) ¢)))

> (switch -1 (+ 1 2) (+ 2 3) (+ 3 4))

@ Here, applicative-order evaluates all the arguments, although
only one value will ever be needed.

22/32



Evaluation Order. ..

@ Ordinary Scheme functions (such as +, car, etc) use
applicative-order evaluation.

@ Some special forms (cond, if, etc) must use normal order
since they need to consume their arguments unevaluated:

> (if #t (display 5) (display 6))
5
> (cond (#f (display 5))

(#f (display 6))

(#t (display 7)))

23/32



A Metacircular Interpreter

@ One way to define the semantics of a language (the effects
that programs written in the language will have), is to write a
metacircular interpreter .

@ l.e, we define the language by writing an interpreter for it, in
the language itself.

@ A metacircular interpreter for Scheme consists of two mutually
recursive functions, mEval and mApply:

(define (mEval Expr)

)
(define (mApply Op Args)

)

24/32



A Metacircular Interpreter. . .

@ We want to be able to call our interpreter like this:

> (mEval (+ 1 2))

3

> (mEval (+ 1 (x 3 4)))

13

> (mEval (quote (2 3)))

(2 3)

> (mEval (car (quote (1 2))))
1

25/32



A Metacircular Interpreter. . .

> (mEval (cdr (quote (1 2))))

(2)

> (mEval (cons (quote 5) (quote (1 2))))
(512

> (mEval (null? (quote (1 2))))

#f

> (mEval (null? (quote ())))

#t

> (mEval (if (eq? 1 1) 5 6))

5

26/32



A Metacircular Interpreter. . .

@ mEval handles primitive special forms (lambda, if, const,
define, quote, etc), itself.

@ Note that, for these forms, we must use normal-order
evaluation.

@ For other expressions, mEval evaluates all arguments and calls
mApply to perform the required operation:

27/32



A Metacircular Interpreter. . .

(define (mEval Expr)
(cond

[(null? Expr) ’Q0]

[(number? Expr) Expr]

[(eq? (car Expr) ’if)

(mEvalIf (cadr Expr)

(caddr Expr)
(cadddr Expr))]

[(eq? (car Expr) ’quote) (cadr Expr)]

[else (mApply (car Expr)
(mEvallList (cdr Expr)))]

28/32



A Metacircular Interpreter. . .

@ mApply checks if the operation is one of the builtin primitive
ones, and if so performs the required operation:

(define (mApply Op Args)
(case Op

[(car) (caar Args)]
[(cdr) (cdar Args)]
[(cons) (cons (car Args) (cadr Args))]
[(eq?) (eq? (car Args) (cadr Args))]
[(null?) (null? (car Args))]
[(+) (+ (car Args) (cadr Args))]
[(*) (x (car Args) (cadr Args))]

29/32



A Metacircular Interpreter. . .

@ Some auxiliary functions:

(define (mEvalIf b t e)
(if (mEval b) (mEval t) (mEval e))

(define (mEvallist List)
(cond
[(null? List) Q)]
[else (cons (mEval (car List))
(mEvallist (cdr List)))]

30/32



A Metacircular Interpreter. . .

@ Note that this little interpreter lacks many of Scheme's
functions.

@ We don’t have symbols, 1lambda, define.
@ We can't define or invoke user-defined functions.

@ There are no way to define or lookup variables, local or global.
To do that, mEval and mApply pass around environments
(association lists) of variable/value pairs.

31/32



Readings and References

@ Read Scott, pp. 592-606, 609-610

32/32



