CSc 372

Comparative Programming Languages
5: Haskell - Function Definitions

Department of Computer Science University of Arizona

Defining Functions

- When programming in a functional language we have basically two techniques to choose from when defining a new function:
(1) Recursion
(2) Composition
- Recursion is often used for basic "low-level" functions, such that might be defined in a function library.
- Composition (which we will cover later) is used to combine such basic functions into more powerful ones.
- Recursion is closely related to proof by induction.

Defining Functions. . .

- Here's the ubiquitous factorial function:

$$
\begin{aligned}
\text { fact }:: & \text { Int }->\text { Int } \\
\text { fact } \mathrm{n}= & \text { if } \mathrm{n}=0 \text { then } \\
& 1 \\
& \text { else } \\
& \mathrm{n} * \text { fact }(\mathrm{n}-1)
\end{aligned}
$$

- The first part of a function definition is the type signature, which gives the domain and range of the function:
fact :: Int -> Int
- The second part of the definition is the function declaration, the implementation of the function:

$$
\text { fact } n=\text { if } n=0 \text { then } \cdots
$$

Defining Functions. . .

- The syntax of a type signature is
fun_name :: argument_types
fact takes one integer input argument and returns one integer result.
- The syntax of function declarations:
fun_name param_names = fun_body

Conditional Expressions

- if e_{1} then e_{2} else e_{3} is a conditional expression that returns the value of e_{2} if e_{1} evaluates to True. If e_{1} evaluates to False, then the value of e_{3} is returned. Examples:

```
if True then 5 else 6 }\quad=>
if False then 5 else 6 }\quad=>
if 1==2 then 5 else 6 }\quad=>
5 + if 1==1 then 3 else 2 # 8
```

- Note that this is different from Java's or C's if-statement, but just like their ternary operator ?::

```
int max = (x>y)?x:y;
```


Conditional Expressions. . .

- Example:

$$
\begin{aligned}
\text { abs :: } & \text { Int }->\text { Int } \\
\text { abs } n= & \text { if } n>0 \text { then } n \text { else }-n \\
\text { sign :: } & \text { Int }->\text { Int } \\
\text { sign } n= & \text { if } n<0 \text { then }-1 \text { else } \\
& \text { if } n==0 \text { then } 0 \text { else } 1
\end{aligned}
$$

- Unlike in C and Java, you can't leave off the else-part!

Guarded Equations

- An alternative way to define conditional execution is to use guards:

```
abs :: Int -> Int
abs n | n>= 0 = n
    | otherwise = -n
```

sign :: Int -> Int
sign $n \mid n<0=-1$
| $\mathrm{n}==0=0$
| otherwise = 1

- The pipe symbol is read such that.
- otherwise is defined to be True.
- Guards are often easier to read - it's also easier to verify that you have covered all cases.

Defining Functions. . .

- fact is defined recursively, i.e. the function body contains an application of the function itself.
- The syntax of function application is: fun_name arg. This syntax is known as "juxtaposition".
- We will discuss multi-argument functions later. For now, this is what a multi-argument function application ("call") looks like:
fun_name arg_1 arg_2 \cdots arg_n
- Function application examples:

fact 1	$\Rightarrow 1$
fact 5	$\Rightarrow 120$
fact $(3+2)$	$\Rightarrow 120$

Multi-Argument Functions

- A simple way (but usually not the right way) of defining an multi-argument function is to use tuples:
add :: (Int, Int) -> Int
add $(x, y)=x+y$
$>$ add $(40,2)$
42
- Later, we'll learn about Curried Functions.

Function

- error string can be used to generate an error message and terminate a computation.
- This is similar to Java's exception mechanism, but a lot less advanced.

```
f :: Int -> Int
f n = if n<0 then
    error "illegal argument"
    else if n <= 1 then
        1
    else
        n * f (n-1)
```

 \(>f(-1)\)
 Program error: illegal argument

Layout

- A function definition is finished by the first line not indented more than the start of the definition

```
myfunc :: Int -> Int
myfunc x = if x == 0 then
    O else 99
```

myfunc :: Int -> Int
myfunc $x=$ if $x=0$ then
0 else 99
myfunc :: Int -> Int
myfunc $x=$ if $x==0$ then
0 else 99

- The last two generate a Syntax error in expression when the function is loaded.

Function Application

- Function application ("calling a function with a particular argument") has higher priority than any other operator.
- In math (and Java) we use parentheses to include arguments; in Haskell no parentheses are needed.
>f $\mathrm{a}+\mathrm{b}$
means
$>(f a)+b$
since function application binds harder than plus.

Function Application. . .

- Here's a comparison between mathematical notations and Haskell:

Math	Haskell
$f(x)$	$\mathrm{f} x$
$f(x, y)$	fx y
$f(g(x))$	$\mathrm{f} \quad \mathrm{g} \mathrm{x})$
$f(x, g(y))$	$\mathrm{fx} \quad \mathrm{g} \mathrm{y})$
$f(x) g(y)$	$\mathrm{fx} * \mathrm{~g} \mathrm{y}$

Recursive Functions

Simple Recursive Functions

- Typically, a recursive function definition consists of a guard (a boolean expression), a base case (evaluated when the guard is True), and a general case (evaluated when the guard is False).

```
fact n =
    if n == 0 then }\quad\Leftarrow\mathrm{ guard
    1
    else
    n * fact (n-1) }\Leftarrow\mathrm{ general case
```


Simulating Recursive Functions

- We can visualize the evaluation of fact 3 using a tree view, box view, or reduction view.
- The tree and box views emphasize the flow-of-control from one level of recursion to the next
- The reduction view emphasizes the substitution steps that the hugs interpreter goes through when evaluating a function. In our notation boxed subexpressions are substituted or evaluated in the next reduction.
- Note that the Haskell interpreter may not go through exactly the same steps as shown in our simulations. More about this later.

Tree View of fact 3

- This is a Tree View of fact 3.
- We keep going deeper into the recursion (evaluating the general case) until the guard is evaluated to True.

Tree View of fact 3

- When the guard is True we evaluate the base case and return back up through the layers of recursion.

Box View of fact 3

fact 3

Box View of fact 3...

fact 3

Box View of fact 3...

fact 3

Reduction View of fact 3

```
fact 3 }
if 3 == 0 then 1 else 3 * fact (3-1) #
if False then 1 else 3* fact (3-1) =>
3 * fact (3-1) =>
3 * fact 2 }
3* if 2 == 0 then 1 else 2 * fact (2-1) }
3* if False then 1 else 2 * fact (2-1) }
3 * (2 * fact (2-1)) =
3 * (2 * fact 1) }
3 * (2 * if 1 == 0 then 1 else 1 * fact (1-1))
    #
```


Reduction View of fact 3...

```
\(3 *(2 *\) if \(1=0\) then 1 else \(1 *\) fact (1-1)) \(\Rightarrow\)
\(3 *(2 *\) if False then 1 else \(1 *\) fact (1-1)) \(\Rightarrow\)
\(3 *(2 *(1 * \operatorname{fact}(1-1))) \Rightarrow\)
\(3 *(2 *(1 *\) fact 0\()) \Rightarrow\)
\(3 *(2 *(1 *\) if \(0==0\) then 1 else \(0 *\) fact ( \(0-1))) \Rightarrow\)
\(3 *(2 *(1 *\) if True then 1 else \(0 *\) fact ( \(0-1))) \Rightarrow\)
\(3 *(2 *(1 * 1)) \Rightarrow\)
\(3 *(2 * 1) \Rightarrow\)
\(3 * 2 \Rightarrow\)
6
```


Recursion Over Lists

- In the fact function the guard was $n==0$, and the recursive step was fact $(n-1)$. I.e. we subtracted 1 from fact's argument to make a simpler (smaller) recursive case.
- We can do something similar to recurse over a list:
(1) The guard will often be $\mathrm{n}==[$] (other tests are of course possible).
(2) To get a smaller list to recurse over, we often split the list into its head and tail, head:tail.
(3) The recursive function application will often be on the tail, f tail.

The length Function

The length of the empty list [] is zero. The length of a non-empty list S is one plus the length of the tail of S.

In Haskell:

```
len :: [Int] -> Int
len s = if s == [ ] then
    0
    else
        1 + len (tail s)
```

- We first check if we've reached the end of the list $s==[$]. Otherwise we compute the length of the tail of s, and add one to get the length of s itself.

Reduction View of len $[5,6]$

$$
\begin{aligned}
& \text { len } \mathrm{s}=\text { if } \mathrm{s}==[\mathrm{then} 0 \text { else } 1 \text { + len (tail s) } \\
& \text { len }[5,6] \Rightarrow \\
& \text { if }[5,6]==[\text {] then } 0 \text { else } 1+\text { len (tail }[5,6]) \Rightarrow \\
& 1+\text { len (tail }[5,6] \text {) } \Rightarrow \\
& 1+\operatorname{len}[6] \Rightarrow \\
& 1+\text { (if [6]==[] then } 0 \text { else } 1+\text { len (tail [6])) } \Rightarrow \\
& 1+(1+\operatorname{len}(\text { tail }[6])) \Rightarrow \\
& 1+(1+\operatorname{len}[]) \Rightarrow \\
& 1+(1+(i f[]==[] \text { then } 0 \text { else } 1+l e n(t a i l[]))) \Rightarrow \\
& 1+(1+0)) \Rightarrow 1+1 \Rightarrow 2
\end{aligned}
$$

Tree View of len $[5,6,7]$

