
CSc 372

Comparative Programming Languages

9 : Haskell — Polymorphic Functions

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2013 Christian Collberg

1/16

collberg@gmail.com


Polymorphic Functions

In many languages we can’t write a generic sort routine, i.e.
one that can sort arrays of integers as well as arrays of reals:

procedure Sort (

var A : array of <type>;

n : integer);

In Haskell (and many other FP languages) we can write
polymorphic (“many shapes”) functions.

Functions of polymorphic type are defined by using type
variables in the signature:

length :: [a] -> Int

length s = ...

2/16



Polymorphic Functions. . .

length is a function from lists of elements of some
(unspecified) type a, to integer. I.e. it doesn’t matter if we’re
taking the length of a list of integers or a list of reals or
strings, the algorithm is the same.

length [1,2,3] ⇒ 3 (list of Int)

length ["Hi ", "there", "!"] ⇒ 3 (list of String)

length "Hi!" ⇒ 3 (list of Char)

3/16



Polymorphic Functions. . .

We have already used a number of polymorphic functions that
are defined in the standard prelude.

head is a function from “lists-of-things” to “things”:

head :: [a] -> a

tail is a function from lists of elements of some type , to a
list of elements of the same type:

tail :: [a] -> [a]

cons "(:)" takes two arguments: an element of some type a
and a list of elements of the same type. It returns a list of
elements of type a:

(:) :: a -> [a] -> [a]

4/16



Polymorphic Functions. . .

Note that head and tail always take a list as their argument.
tail always returns a list, but head can return any type of
object, including a list.

Note that it is because of Haskell’s strong typing that we can
only create lists of the same type of element. If we tried to do

? 5 : [True]

the Haskell type checker would complain that we were consing
an Int onto a list of Bools, while the type of “:” is

(:) :: a -> [a] -> [a]

5/16



Context Predicates



The remdups Function

Remember the remdups function:

remdups [1] ⇒ [1]

remdups [1,2,1] ⇒ [1,2,1]

remdups [1,2,1,1,2] ⇒ [1,2,2]

remdups [1,1,1,2] ⇒ [1,2,1]

Algorithm in Haskell:

remdups :: [Int] -> [Int]

remdups x:y:xs =

if x == y then

remdups y:xs ⇐ case 1

else

x : remdups y:xs ⇐ case 2

remdups xs = xs ⇐ case 3

7/16



Context Predicates

Obviously remdups should work for any list, not just lists of
Ints. Removing duplicates from a list of strings is no
different from removing duplicates from a list of integers.

However, there’s a complication. In order to remove
duplicates from a list, we must be able to compare list
elements for equality.

The polymorphic type

[a] -> [a]

is therefore a bit too general, since it would allow any type,
even one for which equality is not defined.

8/16



Context Predicates. . .

Haskell uses context predicates to restrict polymorphic
types:

remdups :: Eq [a] => [a] -> [a]

Now, remdups may only be applied to list of elements where
the element type has == and \= defined.

Eq is called a type class. Ord is another useful type class. It
is used to restrict the polymorphic type of a function to types
for which the relational operators (<, <=, >, >=) have been
defined.

9/16



Multiple Context Predicates

Consider the signum Function:

signum :: (Num a, Ord a) => a -> Int

signum n | n == 0 = 0

| n > 0 = 1

| n < 0 = -1

signum can be applied to any type that is a number (hence
the Num a predicate), and for which the relational operators
are defined (Ord a).

Without these restrictions, the polymorphic signum function
could have been applied to lists, for example, which would not
have made sense.

10/16



Conclusion



Summary. . .

We want to define functions that are as reusable as possible.
1 Polymophic functions are reusable because they can be applied

to arguments of different types.
2 Curried functions are reusable because they can be specialized;

i.e. from a curried function f we can create a new function f’

simply by “plugging in” values for some of the arguments, and
leaving others undefined.

12/16



Summary

A polymorphic function is defined using type variables in the
signature. A type variable can represent an arbitrary type.

All occurences of a particular type variable appearing in a type
signature must represent the same type.

An identifier will be treated as an operator symbol if it is
enclosed in backquotes: "‘".

An operator symbol can be treaded as an identifier by
enclosing it in parenthesis: (+).

13/16



Exercise

Define a polymorphic function dup x which returns a tuple
with the argument duplicated.

Example:

? dup 1

(1,1)

? dup "Hello, me again!"

("Hello, me again!",

"Hello, me again!")

? dup (dup 3.14)

((3.14,3.14), (3.14,3.14))

14/16



Exercise

Define a polymorphic function copy n x which returns a list
of n copies of x.

Example:

? copy 5 "five"

["five","five","five",

"five","five"]

? copy 5 5

[5,5,5,5,5]

? copy 5 (dup 5)

[(5,5),(5,5),(5,5),(5,5),(5,5)]

15/16



Exercise

Let f be a function from Int to Int, i.e. f :: Int -> Int.
Define a function total f x so that total f is the function
which at value n gives the total f 0 + f 1 + · · · + f n.

Example:

double x = 2*x

pow2 x = x^2

totDub = total double

totPow = total pow2

? totDub 5

30

? totPow 5

55

16/16


