
University of Arizona, Department of Computer Science

CSc 453 — Assignment 5 — Due Tue Dec 8, 23.59 — 10%

Christian Collberg
November 18, 2009

1 Introduction

Your task is to extend the interpreter from the last assignment to handle procedure calls and to write a code
generator for a small subset of Luca.

2 Procedures [35 points]

Extend the interpreter from the last assignment to handle procedure calls. For this part of the assignment
the following rules apply:

• Procedures can be recursive.

• Procedures cannot be nested.

• As in the previous assignment, the compiler should be named lucac and the interpreter should be
named lucax. They should be called like this:

> lucac x.luc > x.vm

> lucax x.vm

You will be given 30 test cases, each worth 1 point. There will be additional secret test cases worth a total
of 5 points.

3 Code Generation [35 points]

Extend your Luca compiler to generate Mips code for the Spim emulator. For this part of the assignment
the following rules apply:

• The only types supported are INTEGER and BOOLEAN.

• There are no procedures.

• There are no structured types (arrays and records).

• All control structures are supported.

• Your compiler should be called lucam. To compile and run a program x.luc the compiler and spim

should be called like this:

1



> lucam x.luc > x.s

> spim -f x.s

You will be given 30 test cases, each worth 1 point. There will be additional secret test cases worth a total
of 5 points.

4 Code Optimization [20 points]

Extend the Mips code generator with a simple “peephole optimizer”. It does the following:

1. Examine a “window” of instructions, maybe 3-4 instructions long.

2. Improve the code in the window.

3. Slide window down one instruction

4. Repeat until no more changes can be made.

Implement at least these two optimizing transformations:

Algebraic simplifications: These are some possibilities:

x := x + 0; ⇒

x := x - 0; ⇒

x := x ∗ 1; ⇒

x := 1 ∗ 1; ⇒ x := 1

x := x / 1; ⇒

f := f / 2.0; ⇒ f := f ∗ 0.5;

Reduction in strength: Multiplications (and divisions) by constants can be replaced by cheaper sequences
of shifts and adds:

x := x ∗ 32 ⇒ x := SHL(x, 5);

x := x ∗ 100

⇓

x := x ∗ (64 + 32 + 4)

⇓

x := x ∗ 64 + x ∗32 + x ∗4

⇓

x := SHL(x,6) + SHL(x,5) + SHL(x,2)

Construct some test cases that clearly show off what your code optimizer can do and

submit these along with the rest of your files. The README file should explain what

your optimizer can do.

2



5 Code in Luca! [5 points]

Write a real program in Luca. By “real” we mean a program that is non-trivial and does something cool. I
define what is real and non-trivial; if in doubt talk to me or the TA. (Hint: These programs will, of course,
be added to our set of test cases. It is therefore in your best interest to write a really nasty program that
your compiler can handle but the other teams’ compilers cannot. <-;.)

The README file should explain what your program does, how to compile and

execute it, etc.

6 Put it all together! [5 points]

Pretty up your compiler and interpreter! Add command-line arguments so that you can switch between
generating code for the interpreter and the code generator, to turn optimization on and off, to print debugging
code, to print help messages, etc. Generate pretty error messages (not XML!). For this part call the compiler
lc and the interpreter lx.

Make an appointment with the TA to show off your compiler! You should try to

impress her with how nifty your compiler is, how great code it generates, how well

structured the code is, how sweet the Luca program you wrote is, how many test

cases you wrote yourself, etc. It’s bragging time!

7 Honors Section

Your Mips code generator should be able to handle procedures.

8 Submission and Assessment

• The deadline for this assignment is Tue Dec 8, 23.59. It is worth 10% of your final grade.

• You should submit the assignment electronically to d2l.arizona.edu.

• You can work alone or in teams of 2. You must submit a README file that lists the members of your
team and how much each team member contributed to the assignment.

• You can download 60 test cases from the class website: http://www.cs.arizona.edu/~collberg/

Teaching/453/2009/Assignments/index.html. Each will give you one point if you get it right and
zero points if you get it wrong. No partial credits. We won’t check for the correctness of line numbers.

• Your electronic submission must contain a working Makefile, and all the files necessary to build the
compiler and interpreter. If your program does not compile “out of the box you will receive zero (0)
points. The TA will not try to debug your program or your makefile for you!

Don’t show your code to anyone outside your team, don’t read anyone else’s code,

don’t discuss the details of your code with anyone. If you need help with the assign-

ment see the TA or the instructor.

3


