
CSc 453

Compilers and Systems Software

1 : Compiler Overview

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2009 Christian Collberg

What does a compiler do?

What’s a Compiler???

At the very basic level a compiler translates a computer
program from source code to some kind of executable code:

errors

VM

asm

source Compiler

x.class

x.s

x.java
x.c

Often the source code is simply a text file and the executable
code is a resulting assembly language program: gcc -S x.c

reads the C source file x.c and generates an assembly code
file x.s. Or the output can be a virtual machine code:
javac x.java produces x.class.

What’s a Language Translator???

A compiler is really a special case of a language translator.

A translator is a program that transforms a “program” P1

written in a language L1 into a program P2 written in another
language L2.

Typically, we desire P1 and P2 to be semantically equivalent,
i.e. they should behave identically.

Example Language Translators

source language translator target language

LATEX
latex2html

−→ html

Postscript
ps2ascii
−→ text

FORTRAN
f2c
−→ C

C++
cfront
−→ C

C
gcc
−→ assembly

.class
SourceAgain

−→ Java

x86 binary
fx32
−→ Alpha binary

What’s a Language???

A formal language is a notation for precisely communicating
ideas.

By formal we mean that we know exactly which “sentences”
belong to the language and that every sentence has a
well-defined meaning.

A language is defined by specifying its syntax and semantics.

The syntax describes how words can be formed into sentences.
The semantics describes what those sentences mean.

Example Languages

English is a natural, not a formal language. The sentence

Many missiles have many warheads.

has multiple possible meanings.

Programming languages: FORTRAN, LISP, Java, C++,. . .

Text processing languages: LATEX, troff,. . .

\begin{frame}\frametitle{Example Languages}

\begin{itemize}

\item English is a \redtxt{natural}, not a formal

language. The sentence

\end{itemize}

\end{frame}

Specification languages: VDM, Z, OBJ,. . .

Compiler Input

Text File Common on Unix.

Syntax Tree A structure editor uses its knowledge of the source
language syntax to help the user edit & run the
program. It can send a syntax tree to the compiler,
relieving it of lexing & parsing.

Compiler Output

Assembly Code Unix compilers do this. Slow, but easy for the
compiler.

Object Code .o-files on Unix. Faster, since we don’t have to call
the assembler.

Executable Code Called a load-and-go-compiler.

Abstract Machine Code Serves as input to an interpreter. Fast
turnaround time.

C-code Good for portability.

Compiler Tasks

Static Semantic Analysis Is the program (statically) correct? If
not, produce error messages to the user.

Code Generation The compiler must produce code that can be
executed.

Symbolic Debug Information The compiler should produce a
description of the source program needed by symbolic
debuggers. Try man gdb .

Cross References The compiler may produce cross-referencing

information. Where are identifiers declared &
referenced?

Profiler Information Where does my program spend most of its
execution time? Try man gprof .

The structure of a compiler

Compiler Phases

S Y N T H E S I S

Semantic Analysis

Syntactic Analysis

Lexical Analysis Intermediate Code

Generation

Code Optimization

Machine Code

Generation

A N A L Y S I S

Compiler Phases – Lexical analysis

The lexer reads the source file and divides the text into lexical
units (tokens), such as:

Reserved words BEGIN, IF,. . .
identifiers x, StringTokenizer,. . .

special characters +, ∗,−, ^,. . .
numbers 30, 3.14,. . .

comments (* text *),
strings "text".

Lexical errors (such as ’illegal character’, ’undelimited
character string’, ’comment without end’) are reported.

Lexical Analysis of English

The sentence
The boy’s cowbell won’t play.

would be translated to the list of tokens

the, boy+possessive, cowbell, will, not, play

Lexical Analysis of Java

The sentence
x = 3.14 * (9.0+y);

would be translated to the list of tokens

<ID,x>, EQ, <FLOAT,3.14>, STAR, LPAREN,

<FLOAT,9.0>, PLUS, <ID,y>, RPAREN, SEMICOLON

Compiler Phases – Syntactic analysis

Syntax analysis (parsing) determines the structure of a
sentence.

The compiler reads the tokens produced during lexical analysis
and builds an abstract syntax tree (AST), which reflects the
hierarchical structure of the input program.

Syntactic errors are reported to the user:

’missing ;’,
’BEGIN without END’

Syntactic Analysis of English

The sentence
The boy plays cowbell.

would be parsed into the tree

cowbell

NP

S

VP

Det N V

N

NP

The boy plays

S=sentence, NP=noun phrase, VP=verb phrase,
Det=determiner, N=noun, V=verb.

Syntactic Analysis of Java

The sentence
x = 3.14 * (9.0+y);

would be parsed into the AST

x

Assign

MUL

FLOAT
3.14

ADD

FLOAT ID
y9.0

ID

Compiler Phases – Semantic analysis

The AST produced during syntactic analysis is decorated with
attributes, which are then evaluated. The attributes can
represent any kind of information such as expression types.

The compiler also collects information useful for future phases.

Semantic errors are reported:

’identifier not declared’,
’integer type expected’.

Semantic Analysis of English

In the sentence
The boy plays his cowbell.

we determine that his refers to the boy.

Semantic Analysis of Java

In the sentence

static float luftballons = 10;

void P() {int luftballons = 99;

System.out.println(luftballons);}

the compiler must determine

which luftballons the print-statement refers to,
that float luftballons=10 has the wrong type.

Compiler Phases – IR Generation

From the decorated AST this phase generates intermediate
code (IR).

The IR adds an extra a level of abstraction between the high
level AST and the very low level assembly code we want to
generate. This simplifies code generation.

A carefully designed IR allows us to build compilers for a
number of languages and machines, by mixing and matching
front-ends and back-ends.

IR Generation of English

From the sentence
Every boy has a cowbell.

we could generate

∀x ; boy(x) ⇒ has-cowbell(x)

IR Generation of Java

From the sentence
x = 3.14 * (9.0+y);

the compiler could generate the (stack-based) IR code

pusha x, pushf 3.14, pushf 9.0,

push y, add, mul, assign

Compiler Phases – Code Optimization

The (often optional) code optimization phase transforms an
IR program into an equivalent but more efficient program.

Typical transformations include

common subexpression elimination only compute an
expression once, even if it occurs more than
once in the source),

inline expansion insert a procedure’s code at the call site to
reduce call overhead,

algebraic transformations A := A + A is faster than
A := A ∗ 2.

Compiler Phases – Code Generation

The last compilation phase transforms the intermediate code
into machine code, usually assembly code or link modules.

Alternatively, the compiler generates Virtual Machine Code
(VM), i.e. code for a software defined architecture. Java
compilers, for example, generate class files containing
bytecodes for the Java VM.

Multipass Compilation

Multi-pass Compilation

The next slide shows the outline of a typical compiler. In a
unix environment each pass could be a stand-alone program,
and the passes could be connected by pipes:

lex x.c | parse | sem | ir | opt | codegen > x.s

For performance reasons the passes are usually integrated:

front x.c > x.ir

back x.ir > x.s

The front-end does all analysis and IR generation. The
back-end optimizes and generates code.

Multi-pass Compilation. . .

Optimize

AST

asm VM

Semantic
Analyser

Interm.
Code Gen

IR

Machine
Code Gen

IR AST

Lexer

tokens

source

errors

errors

Parser

errors

Gen
VM Code

Mix-and-Match Compilers

Mips−compiler

A

C

K

Sparc Mips 68000 IBM/370

E

N

D

Ada Pascal Modula−2 C++
R

O

N

T

F
E

N

D

Pascal Pascal

68k−compiler
Ada

Mips−compiler

B

Example

Let’s compile the procedure Foo, from start to finish:
PROCEDURE Foo ();

VAR i : INTEGER;

BEGIN

i := 1;

WHILE i < 20 DO

PRINT i * 2;

i := i * 2 + 1;

ENDDO;

END Foo;

The compilation phases are:

Lexial Analysis ⇒ Syntactic Analysis ⇒ Semantic

Analysis ⇒ Intermediate code generation ⇒ Code

Optimization ⇒ Machine code generation.

Example – Lexical Analysis

Break up the source code (a text file) and into tokens.

Source Code Stream of Tokens

PROCEDURE Foo ();

VAR i : INTEGER;

BEGIN

i := 1;

WHILE i < 20 DO

PRINT i * 2;

i := i * 2 + 1;

ENDDO;

END Foo;

PROCEDURE, <id,Foo>, LPAR, RPAR, SC,

VAR, <id,i>, COLON, <id,INTEGER>,SC,

BEGIN, <id,i>,CEQ,<int,1>,SC,

WHILE, <id,i>, LT, <int,20>,DO,

PRINT, <id,i>, MUL, <int,2>, SC,

<id,i>, CEQ, <id,i>, MUL, <int,2>,

PLUS, <int,1>, SC, ENDDO, SC, END,

<id,Foo>, SC

Example – Lexical Analysis. . .

We defined the following set of tokens:

Token String

PROCEDURE "PROCEDURE"

<id,Foo> identifier

LPAR "("

RPAR ")"

SC ";"

VAR "VAR"

COLON ":"

BEGIN "BEGIN"

CEQ ":="

Token String

<int,1> integer literal

WHILE "WHILE"

LT "<"

DO "DO"

PRINT "PRINT"

MUL "*"

PLUS "+"

ENDDO "ENDDO"

END "END"

Example – Syntactic Analysis

Stream of Tokens Abstract Syntax Tree

PROCEDURE, <id,Foo>,

LPAR,RPAR,SC,VAR,<id,i>,

COLON,<id,INTEGER>,SC,

BEGIN,<id,i>,CEQ,<int,1>,

SC,WHILE,<id,i>,LT,<int,20>,

DO,PRINT,<id,i>,MUL,<int,2>,

SC,<id,i>,CEQ,<id,i>,MUL,

<int,2>,PLUS,<int,1>,SC,

ENDDO,SC,END,<id,Foo>,SC

<1i

ASSIGN WHILE

i 20

VAR−DECL

PROC−DECL

*

i 2

i

ASSIGN

*

i 2

1

+

PRINT

EXPR op:<

Left Right

LITERAL

val:1

VAR−REF

id:i

VAR−REF

id:i

LITERAL

val:20

ASSIGN−STAT

Des Expr

id:i

type:INTEGER

VAR−DECL

DeclsArgs Stats

id:FooPROC−DECL

WHILE−STAT

Expr Body

PRINT−STAT

Expr

EXPR

Left Right

op:*

VAR−REF

id:i

LITERAL

val:2

ASSIGN−STAT

Des Expr

EXPR

Left Right

op:*

VAR−REF

id:i

LITERAL

val:2

VAR−REF

id:i

EXPR

Left Right

op:+

LITERAL

val:1

Example – Semantic Analysis

Abstract Syntax Tree Decorated Abstract Syntax Tree

<1i

ASSIGN

VAR−DECL

PROC−DECL

i 20

WHILE

PRINT

*

i 2

PRINT

ASSIGN WHILE

INT

i

i

INT

1

INT

<

BOOL

INT

20

VAR−DECL

PROC−DECL

i

INT

2
INT

*

INT

ASSIGN

i

INT
2

INT

*

INT

1

INT

+

INT

i

INT

PRINT−STAT

Expr

EXPR op:<

Left Right

type:bool

WHILE−STAT

Expr Body

VAR−REF

id:i

type:int

LITERAL

type:int

val:20

EXPR

Left Right

type:int

op:*

LITERAL

type:int

val:2

VAR−REF

id:i

type:int

LITERAL

val:1

type:int

VAR−REF

id:i

type:int

id:i

type:INTEGER

VAR−DECL ASSIGN−STAT

Des Expr

DeclsArgs Stats

id:FooPROC−DECL

ASSIGN−STAT

Des Expr

VAR−REF

id:i

type:int

EXPR

Left Right

type:int

op:+

EXPR

Left Right

type:int

op:*

VAR−REF

id:i

type:int

LITERAL

type:int

val:2

LITERAL

val:1

type:int

Example – IR Generation

Decorated Abstract Syntax Tree Intermediate Code

PRINT

ASSIGN

VAR−DECL

WHILE

PROC−DECL

INT

i

i

INT

1

INT

<

BOOL

INT

20

*

INT

i

INT
2

INT

[1] ASSIGN i 1
[2] BRGE i 20 [9]
[3] MUL t1 i 2
[4] PRINT t1
[5] MUL t2 i 2
[6] ADD t3 t2 1
[7] ASSIGN i t3
[8] JUMP [2]
[9]

Example – IR Generation. . .

Intermediate Code Intermediate Code Definition

[1] ASSIGN i 1
[2] BRGE i 20 [9]
[3] MUL t1 i 2
[4] PRINT t1
[5] MUL t2 i 2
[6] ADD t3 t2 1
[7] ASSIGN i t3
[8] JUMP [2]
[9]

ASSIGN A, B A := B;

BRGE A, B, C IF (A ≥ B) THEN
continue at instruction C ;

MUL A, B, C A := B ∗ C ;

ADD A, B, C A := B + C ;

SHL A, B, C A:=shift B left C steps;

PRINT A Print A and a newline;

JUMP A Continue at instruction A;

Example – Code Optimization

Intermediate Code Optimized Intermediate Code

[1] ASSIGN i 1
[2] BRGE i 20 [9]
[3] MUL t1 i 2
[4] PRINT t1
[5] MUL t2 i 2
[6] ADD t3 t2 1
[7] ASSIGN i t3
[8] JUMP [2]
[9]

[1] ASSIGN i 1
[2] BRGE i 20 [8]
[3] SHL t1 i 1
[4] PRINT t1
[5] ADD t2 t1 1
[6] ASSIGN i t2
[7] JUMP [2]
[8]

Example – Machine Code Generation

Intermediate Code MIPS Machine Code

[1] ASSIGN i 1
[2] BRGE i 20 [8]
[3] SHL t1 i 1
[4] PRINT t1
[5] ADD t2 t1 1
[6] ASSIGN i t2
[7] JUMP [2]
[8]

.data

_i: .word 0

.text

.globl main

main: li $14, 1

$32: bge $14, 20, $33

sll $a0, $14, 1

li $v0, 1

syscall

addu $14, $a0, 1

b $32

$33: sw $14, _i

Summary

Readings and References

Read Louden:

Introduction pp. 1–18, 21–27.

or the Dragon Book:

Introduction pp. 1–24
A Simple Compiler pp. 25–82
Some Compilers pp. 733–744

or the Tiger Book:

Introduction pp. 1–15

Summary

The structure of a compiler depends on
1 the complexity of the language we’re working on (higher

complexity ⇒ more passes),
2 the quality of the code we hope to produce (better code ⇒

more passes),
3 the degree of portability we hope to achieve (more portable ⇒

better separation between front- and back-ends).
4 the number of people working on the compiler (more people ⇒

more independent modules).

Summary. . .

Some highly retargetable compilers for high-level languages
produce C-code, rather than machine code. This C-code is
then compiled by the native C compiler to machine code.

Some languages (APL, LISP, Smalltalk, Java, ICON, Perl,
Awk) are traditionally interpreted (executed in software by an
interpreter) rather than compiled to machine code.

Summary. . .

Some interpreters use dynamic compilation (or jitting),
switching between

1 interpreting the virtual machine code,
2 translating the virtual machine code to native machine code,
3 executing the native machine code,
4 optimizing the native and/or virtual machine code, and
5 throwing native code away if it is no longer needed or takes up

too much room.

All this is done dynamically at runtime.

Exercises

Exercise

Consider this little Java class:

class M {

public static void main(String args[]) {

int x = 6;

while (x != 42) x += 6;

}

}

Show the result after lexical analysis (what tokens do you
need to compile Java?)!

Show the AST after syntax analysis of the token stream (what
AST nodes does Java nead?)!

Show the AST after semantic analysis!

Define an intermediate code and generate it from the AST!

Historical Notes

The First Compiler

FORTRAN I was the first “high-level” programming language.
It’s designers also wrote the first real compiler and invented
many of the techniques that we use today.

The FORTRAN manual can be found here:
http://www.fh-jena.de/~kleine/history.

The excerpt on the next few slides is taken from

John Backus, The history of FORTRAN I, II, and III,
History of Programming Languages, The first ACM

SIGPLAN conference on History of programming

languages, 1978.

Before 1954 almost all programming was done in

machine language or assembly language. Programmers

rightly regarded their work as a complex, creative

art that required human inventiveness to produce an

efficient program. Much of their effort was devoted

to overcoming the difficulties created by the

computers of that era: the lack of index registers,

the lack of builtin floating point operations,

restricted instruction sets (which might have AND but

not OR, for example), and primitive input- output

arrangements. Given the nature of computers, the

services which "automatic programming" performed for

the programmer were concerned with overcoming the

machine’s shortcomings. Thus the primary concern of

some "automatic programming" systems was to allow the

use of symbolic addresses and decimal numbers...

Another factor which influenced the development of

FORTRAN was the economics of programming in 1954.

The cost of programmers associated with a computer

center was usually at least as great as the cost of

the computer itself. ... In addition, from one

quarter to one half of the computer’s time was spent

in debugging. ...

This economic factor was one of the prime motivations

which led me to propose the FORTRAN project ... in

late 1953 (the exact date is not known but other

facts suggest December 1953 as a likely date). I

believe that the economic need ... provided for our

constantly expanding needs over the next five years

without ever askinging us to project or justify those

needs in a formal budget.

It is difficult for a programmer of today to

comprehend what "automatic program- ming" meant to

programmers in 1954. To many it then meant simply

providing mnemonic operation codes and symbolic

addresses, to others it meant the simple’process of

obtaining subroutines from a library and inserting

the addresses of operands into each subroutine. ...

We went on to raise the question "...can a machine

translate a sufficiently rich mathematical language

into a sufficiently economical program at a

sufficiently low cost to make the whole affair

feasible?" ...

In view of the widespread skepticism about the

possibility of producing efficient programs with an

automatic programming system and the fact that

inefficiencies could no longer be hidden, we were

convinced that the kind of system we had in mind

would be widely used only if we could demonstrate

that it would produce programs almost as efficient as

hand coded ones and do so on virtually every job.

As far as we were aware, we simply made up the

language as we went along. We did not regard

language design as a difficult problem, merely a

simple prelude to the real problem: designing a

compiler which could produce efficient programs. Of

course one of our goals was to design a language

which would make it possible for engineers and

scientists to write programs themselves for the 704.

... Very early in our work we had in mind the

notions of assignment statements, subscripted

variables, and the DO statement....

The language described in the "Preliminary Report"

had variables of one or two characters in length,

function names of three or more characters,

recursively defined "expressions", subscripted

variables with up to three subscripts, "arithmetic

formulas" (which turn out to be assignment

statements), and "DO-formulas".

One much-criticized design choice in FORTRAN concerns

the use of spaces: blanks were ignored, even blanks

in the middle of an identifier. There was a common

problem with keypunchers not recognizing or properly

counting blanks in handwritten data, and this caused

many errors. We also regarded ignoring blanks as a

device to enable programmers to arrange their

programs in a more readable form without altering

their meaning or introducing complex rules for

formatting statements.

Section I was to read the entire source program,

compile what instructions it could, and file all the

rest of the information from the source program in

appropriate tables. ...

Using the information that was filed in section I,

section 2 faced a completely new kind of problem; it

was required to analyze the entire structure of the

program in order to generate optimal code from DO

statements and references to subscripted variables.

...

section 4, ... analyze the flow of a program

produced by sections I and 2, divide it into "basic

blocks" (which contained no branching), do a Monte

Carlo (statistical) analysis of the expected

frequency of execution of basic blocks--by simulating

the behavior of the program and keeping counts of the

use of each block--using information from DO

statements and FREQUENCY statements, and collect

information about index register usage ... Section 5

would then do the actual transformation of the

program from one having an unlimited number of index

registers to one having only three.

The final section of the compiler, section 6,

assembled the final program into a relocatable binary

program...

Unfortunately we were hopelessly optimistic in 1954

about the problems of debugging FORTRAN programs

(thus we find on page 2 of the Report: "Since

FORTRAN should virtually eliminate coding and

debugging...")

Because of our 1954 view that success in producing

efficient programs was more important than the design

of the FORTRAN language, I consider the history of

the compiler construction and the work of its

inventors an integral part of the history of the

FORTRAN language; ...

