
CSc 453

Compilers and Systems Software

13 : Intermediate Code I

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2009 Christian Collberg

Introduction

Compiler Phases

We are here!

AST

asm

Semantic
Analyser

Interm.
Code Gen

IR

Machine
Code Gen

IR AST

Lexer

tokens

source

errors

Parser

errors

Optimize

errors

Intermediate Representations

Some compilers use the AST as the only intermediate
representation. Optimizations (code improvements) are
performed directly on the AST, and machine code is
generated directly from the AST.

The AST is OK for machine-independent optimizations, such
as inlining (replacing a procedure call with the called
procedure’s code).

The AST is a bit too high-level for machine code generation
and machine-dependent optimizations.



Intermediate Representations. . .

For this reason, some compilers generate a lower level
(simpler, closer to machine code) representation from the
AST. This representation is used during code generation and
code optimization.

Intermediate Code

Advantages of:

1 Fitting many front-ends to many back-ends,
2 Different development teams for front- and back-end,
3 Debugging is simplified,
4 Portable optimization.

Requirements:

1 Architecture independent,
2 Language independent,
3 Easy to generate,
4 Easy to optimize,
5 Easy to produce machine code from.

Mix-and-Match Compilers

INTERMEDIATE REPRESENTATION

Pascal Pascal

68k−compiler
Ada

Mips−compiler Mips−compiler

E

N

D

R

O

N

T

F

Ada Pascal Modula−2 C++

B

A

C

K

Sparc Mips 68000 IBM/370

E

N

D

UNCOL

A representation which is both architecture and language
independent is known as an UNCOL, a Universal Compiler

Oriented Language.

UNCOL is the holy grail of compiler design – many have
search for it, but no-one has found it. Problems:

1 Programming language semantics differ from one language to
another,

2 Machine architectures differ.



Intermediate Code. . .

There are several different types of intermediate
representations:

1 Tree-Based.
2 Graph-Based.
3 Tuple-Based.
4 Linear representations.

All representations contain the same information. Some are
easier to generate, some are easy to generate simple machine
code from, some are easy to generate good code from.

IR — Intermediate Representation.

Postfix Notation

Postfix Notation

*

assign

b

a 2 a 2

+

*
Infix: b := (a ∗ 2) + (a ∗ 2)
Postfix: b a 2 * a 2 * + :=

Postfix notation is a parenthesis free notation for arithmetic
expression. It is essentially a linearized representation of an
abstract syntax tree.

In postfix notation an operator appears after its operands.

Very simple to generate, very compact, easy to generate
straight-forward machine code from, difficult to generate
good machine code from.

Tree & DAG Representations



Tree & DAG Representation

Trees make good intermediate representations. We can
represent the program as a sequence of expression trees.
Each assignment, procedure call, or jump becomes one
individual tree in the forest.

Common Subexpression Elimination (CSE): Even if the
same (sub-) expression appears more than once in a
procedure, we should only compute its value once, and save
the result for future reference.

One way of doing this is to build a graph representation,
rather than a tree. In the following slides we see how the
expression a ∗ 2 gets two subtrees in the tree representation
and one subtree in the DAG representation.

Tree & DAG Representation. . .

b := (a ∗ 2) + (a ∗ 2)

*

assign

b

a 2 a 2

+

*

Linearized Tree
Nr Op Arg1 Arg2

1 ident a

2 int 2
3 mul 1 2
4 ident a

5 int 2
6 mul 4 5
7 add 3 6
8 ident b

9 assign 8 7

Tree & DAG Representation. . .

b := (a ∗ 2) + (a ∗ 2)

*

assign

b +

a 2

Linearized Dag
Nr Op Arg1 Arg2

1 ident a

2 int 2
3 mul 1 2
4 add 3 3
5 ident b

6 assign 5 4

Sequence of Expression Trees

X := 20;

WHILE X < 10 DO

X := X-1;

A[X] := 10;

IF X = 4 THEN

X := X - 2;

ENDIF;

ENDDO;

Y := X + 5;

X

X

:=

20

goto

B3
:=

X

Y +

5

goto

EXIT

>=

10 B4X

:=

X

−

1

X

[]

A X

:=

10

X 4 B6

<>

:=

X

−

2

goto

B2
EXIT:

B4:

B3:

B5:

B6:

B2:



Building DAGs. . .

Repeatedly add subtrees to build DAG. Only add subtrees not
already in DAG. Store subtrees in a hash table. This is the
value-number algorithm.
For every insertion of
a subtree, check if
(X OP Y ) ∈ DAG. X Y

OP

PROCEDURE InsertNode (

OP : Operator; L, R : Node) : Node;

BEGIN

V := hashfunc (OP, L, R);

N := HashTab.Lookup (V , OP, L, R);

IF N = NullNode THEN

N := NewNode (OP, L, R);

HashTab.Insert (V , N);

END;

RETURN N;

Building DAGs – Example

3

4

6

2

5

A+B

A

B

+

A B

1

3

4

6

2

5

A+B

A

B

(A+B)*C

C

+

A B

C

*

1

3

4

6

2

5

+

A B

C

*
+

(A+B)*C+(A+B)

A+B

A

B

(A+B)*C

C

1

Building DAGs

From an expression/expression tree such as the one on the left
we might generate the machine code (for some fictitious
architecture) on the right:

a ∗ (b + c)

4

1

2 3

5

+

a

*

cb

LOAD b, r0

LOAD c, r1

ADD r0, r1, r2

LOAD a, r3

MUL r2, r3, r4

Can we generate better code from a DAG than a tree?

Building DAGs. . .

Example Expression:

[(a + b) ∗ c + {(a + b) + e} ∗ (e + f )] ∗ [(a + b) ∗ c]

Tree Representation:

+
+

a b

c
*

+
e f+

a b

+
e

*
+

a b

c
*

*



Building DAGs. . .

[(a + b) ∗ c + {(a + b) + e} ∗ (e + f )] ∗ [(a + b) ∗ c]

DAG Representation:

e

*

+

+
a b

c
* *

+ +
f

Building DAGs. . .

Generating machine code from the tree yields 21 instructions.

Code from Tree
LOAD a, r0 ; a

LOAD b, r1 ; b

ADD r0, r1, r2 ; a + b

LOAD c, r0 ; c

MUL r0, r2, r3 ; (a + b) ∗ c

LOAD a, r0 ; a

LOAD b, r1 ; b

ADD r0, r1, r2 ; a + b

LOAD e, r0 ; e

ADD r2, r0, r4 ; (a + b) + e

LOAD f, r0 ; f

LOAD e, r1 ; e

ADD r0, r1, r0 ; f + e

MUL r4, r0, r4 ; {(a + b) + e}∗
; (e + f )

ADD r3, r4, r4

; Code for (a + b) ∗ c into r3

MUL r4, r3, r0

Building DAGs. . .

Generating machine code from the DAG yields only 12
instructions.

Code from DAG

LOAD a, r0 ; a

LOAD b, r1 ; b

ADD r0, r1, r2 ; a + b

LOAD c, r0 ; c

MUL r0, r2, r3 ; (a + b) ∗ c

LOAD e, r4 ; e

ADD r4, r2, r1 ; (a + b) +
LOAD f, r0 ; f

ADD r0, r4, r0 ; f + e

MUL r1, r0, r0

ADD r0, r3, r0

MUL r0, r3, r0

Tuple Codes



Three-Address Code

Another common representation is three-address code. It is
akin to assembly code, but uses an infinite number of
temporaries (registers) to store the results of operations.

There are three common realizations of three-address code:
quadruples, triples and indirect triples.

Types of 3-Addr Statements:

x := y op z Binary arithmetic or logical operation. Example:
Mul, And.

x := op y Unary arithmetic, conversion, or logical operation.
Example: Abs, UnaryMinus, Float.

x := y Copy statement.

Three-Address Code. . .

goto L Unconditional jump.

if x relop y goto L Conditional jump. relop is one of <,>,<=,
etc. If x relop y evaluates to True, then jump to
label L. Otherwise continue with the next tuple.

param X ; call P, n Make X the next parameter; make a
procedure call to P with n parameters.

x := y[i] Indexed assignment. Set x to the value in the

location i memory units beyond y.

Three-Address Code. . .

x := ADDR(y) Address assignment. Set x to the address of y.

x := IND(y) Indirect assignment. Set x to the value stored at

the address in y.

IND(x) := y Indirect assignment. Set the memory location

pointed to by x to the value held by y.

Three-Address Code. . .

Many three-address statements (particularly those for binary
arithmetic) consist of one operator and three addresses
(identifiers or temporaries):

b := (a ∗ 2) + (a ∗ 2)

t1 := a mul 2
t2 := a mul 2
t3 := t1 add t2

b := t3



Three-Address Code. . .

There are several ways of implementing three-address
statements. They differ in the amount of space they require,
how closely tied they are to the symbol table, and how easily
they can be manipulated.

During optimization we may want to move the three-address
statements around.

Three-Address Code — Quadruples

Quadruples can be implemented as an array of records with
four fields. One field is the operator.

The remaining three fields can be pointers to the symbol table
nodes for the identifiers. In this case, literals and temporaries
must be inserted into the symbol table.

b := (a ∗ 2) + (a ∗ 2)

Nr Res Op Arg1 Arg2

(1) t1 mul a 2

(2) t2 mul a 2

(3) t3 add t1 t2

(4) b assign t3

Three-Address Code — Triples

Triples are similar to quadruples, but save some space.

Instead of each three-address statement having an explicit
result field, we let the statement itself represent the result.

We don’t have to insert temporaries into the symbol table.

b := (a ∗ 2) + (a ∗ 2)

Nr Op Arg1 Arg2

(1) mul a 2

(2) mul a 2

(3) add (1) (2)

(4) assign b (3)

Three-Address Code — Indirect Triples

One problem with triples (“The Trouble With Triples?”a) is
that they cannot be moved around. We may want to do this
during optimization. We can fix this by adding a level of
indirection, an array of pointers to the “real” triples.

b := (a ∗ 2) + (a ∗ 2)

Abs Real

(1) (10)
(2) (11)
(3) (12)
(4) (13)

Nr Op Arg1 Arg2

(11) mul a 2

(12) mul a 2

(13) add (11) (12)

(14) := b (13)

aThis is a joke. It refers to the famous Star Trek episode “The Trouble With

Tribbles.” OK, so it’s not funny.



Summary

Readings and References

Read Louden:

Intermediate Code 398–407

Or, read the Dragon book:

Postfix notation 33
DAGs & Value Number Alg. 290–293
Intermediate Languages 463–468, 470–473

Summary

We use an intermediate representation of the program in order
to isolate the back-end from the front-end.

A high-level intermediate form makes the compiler
retargetable (easily changed to generate code for another
machine). It also makes code-generation difficult.

A low-level intermediate form make code-generation easy, but
our compiler becomes more closely tied to a particular
architecture.

A basic block is a straight-line piece of code, with no jumps in
or out except at the beginning and end.

Homework



Homework I

Translate the program below into quadruples, triples, and a
’sequence of expression trees.’

PROGRAM P;

VAR X : INTEGER; VAR Y : REAL;

BEGIN

X := 1; Y := 5.5;

WHILE X < 10 DO

Y := Y + FLOAT(X);

X := X + 1;

IF Y > 10 THEN Y := Y * 2.2; ENDIF;

ENDDO;

END.

Homework II

Consider the following expression:

((x ∗ 4) + y) ∗ (y + (4 ∗ x)) + (z ∗ (4 ∗ x))

1 Show how the value-number algorithm builds a DAG from the
expression (remember that + and ∗ are commutative).

2 Show the resulting DAG when stored in an array.

3 Translate the expression to postfix form.

4 Translate the expression to indirect triple form.

Homework III

Translate the program below into quadruples, triples, and a
’sequence of expression trees.’

PROGRAM P;

VAR X : INTEGER; VAR Y : REAL;

BEGIN

X := 1; Y := 5.5;

WHILE X < 10 DO

Y := Y + FLOAT(X);

X := X + 1;

IF Y > 10 THEN Y := Y * 2.2; ENDIF;

ENDDO;

END.

Tree Code Example



record ProcBegin (Name,Level,VarSize,FormalSize,LineNo)

The beginning of each procedure is marked by a
ProcBegin instruction.

Attributes: Name is the name of the procedure.
Level is the declaration level of the
procedure. VarSize is the amount of
local data (in bytes) required for the
procedure. FormalSize is the size of
the actual parameters passed to the
procedure.

Children: None.

record ProcEnd (Name,Level,VarSize,FormalSize,LineNo)

Same attributes as ProcBegin

record VarDecl (Name,Type,Level,Offset,Size,LineNo)

Each global variable is given an explicit declaration in
the intermediate code.

Attributes: Type is one of the strings "INT",
"CHAR", "STRING", "REAL", or
"STRUCT". Offset gives the relative
address of the variable

Children: None.

record Store (Type,Des,Expr,LineNo) Store instructions
are generated from assignment statements.

Attributes: Type is the type.
Children: Des is the subtree which computes the

address (L-value) at which the new
value should be stored. Expr is a
subtree computing the R-value.

record VarRef (Type,Name,Level,LineNo) VarRef nodes
are used to refer to the address of a global or local
variable.

Attributes: Level is the static nesting level at
which the variable was declared.

Children: None.

record Literal (Type,Value,LineNo) Literal nodes
represent integer, real, character, or string constants.

Attributes: Type is as for VarDecl, but there are
no "STRUCT" constants.

Children: None.

record BinExpr (Op,Type,Left,Right,LineNo) BinExpr

instructions represent binary arithmetic.

Attributes: Type is either "INT" or "REAL". Op is
one of "+", "-", "*", "/", or "%".

Children: Left and Right are subtrees holding
the left and right hand sides of the
arithmetic operator, respectively.

record Load (Type,Des,LineNo) Load instructions represent
the loading of an R-value from an L-value.

Attributes: Type is the type of the loaded value.
Children: Des is the subtree which computes the

address (L-value) whose R-value should
be loaded.



record Branch (Op,Type,Left,Right,Label,LineNo)

Conditional branch, equivalent to ’IF Left Op

Right THEN GOTO Label’.

Attributes: Type is "INT", "CHAR", or "REAL". Op
is one of "=", "<", ">", "#", "<=",
">=". Label is the number of the label
to which we should jump.

Children: Left and Right are expression subtrees
computing the arguments to the
comparison operator.

record Goto (Label,LineNo) Unconditional branch.

Attributes: Label is the label number to which we
should jump.

record Label (Number,LineNo) A program location to which
a Branch or Goto may jump.

Attributes: Number is the label number.

record ProcCall (Name, Actuals, Level, LineNo)

Procedure call.

Attributes: Name is the name of the procedure.
Level is the level at which the
procedure is declared.

Children: Actuals is the list of actual
parameters.

record Field (BaseAddress,Name,Offset,LineNo)

Compute the address of a field within a record
variable, i.e. BaseAddress + Offset.

Attributes: Offset is the offset of the field within
the record variable.

Children: BaseAddress is a subtree computing
the address of the record variable.

record Index (BaseAddress,IndexExpr,ElementSize,ElementCount,LineNo)

Compute the address of an array element, i.e.
BaseAddress + IndexExpr * ElementSize. If
0 > IndexExpr ≥ ElementCount then a run-time
error message should be generated.

Attributes: ElementSize is the size of the array
elements. ElementCount is the length
of the array.

Children: BaseAddress and IndexExpr are
subtrees computing the address of the
beginning of the array the number of
the indexed array element.

record Actual (Type,Number,Offset,Expr,LineNo) Pass
the value of Expr as argument to a procedure call.

Attributes: If Type="STRUCT" then the formal is
passed by reference, otherwise by value.
Number is the argument number,
Offset is the relative address within
the activation record.

Children: Expr is the subtree computing the
value (or address) of the actual.

record FormalRef(Type,Name,Level,Offset,Number,LineNo)

Reference to the value of a formal parameter. Similar
to VarRef.

Attributes: Level is the static nesting level at
which the formal is declared. If
Type="STRUCT" then the formal is
passed by reference, otherwise by value.

Children: None.



(5)

VarDecl

Name=Y Level=0
Type=STRUCT

Size=600Offset=8

Level=−1

VarSize=608
FormalSize=0

Name=_main

ProcBegin

VarDecl

Level=0

Type=INT Offset=0

Size=4

Name=X

(1)

(3)

(2)

Load

Type=INT

Des

Name=X Type=INT

Level=0 Offset=0

VarRef

Label

Number=4

Branch

Right

Type=INT

Left

Label=8

Op=<

Literal

Type=INT

Value=10

PROGRAM P;
TYPE R=RECORD[a;CHAR;b:INTEGER];
TYPE A=ARRAY 100 OF R;
VAR X:INTEGER;
VAR Y:A;
BEGIN

END.

WHILE X<10 DO
X := Y[55].b + 66;

ENDDO;

(4)
ProcEnd

Name=X Type=INT

Level=0 Offset=0

VarRef

Store

Type=INT

ExprDes

BinExpr

Op=+ Type=INT

Left Right

(8)

Label=7

Goto

Number=8

Label

(6)

(7)

Goto

Label=4

Label

Number=7

(9)

(10)

Level=−1

VarSize=608
FormalSize=0

Name=_main

(11)

(8)

BaseAddress

Name=b Offset=2

Field

Name=X Type=INT

Level=0 Offset=0

VarRef BinExpr

Op=+ Type=INT

Left Right

Store

Type=INT

ExprDes

Type=INT

Load

Des

Literal

Type=INT

Value=66

Index

ElementCount=100
ElementSize=6

BaseAddr IdxExpr

VarRef

Name=Y Type=STRUCT

Level=0 Offset=8

Literal

Type=INT

Value=55

(1) [VarDecl]: Name=’X’:Level=0:Type=INT:Offset=0:Size=4

(2) [VarDecl]: Name=’Y’:Level=0:Type=STRUCT:Offset=8:Size=600

(3) [ProcBegin]: Name=’_main’:Level=-1:VarSize=608:FormalSize=0

(4) [Label]: Number=4

(5) [Branch]: Op=’<’:Type=INT:Label=8

Left=

[Load]: Type=INT

Des=

[VarRef]: Name=’X’:Type=INT:Level=0:Offset=0

Right=

[Literal]: Type=INT:Value=’10’

(6) [Goto]: Label=7

(7) [Label]: Number=8



(8) [Store]: Type=INT

Des=

[VarRef]: Name=’X’:Type=INT:Level=0:Offset=0

Expr=

[BinExpr]: Op=’+’:Type=INT

Left= [SEE NEXT SLIDE]

Right=

[Literal]: Type=INT:Value=’66’

(9) [Goto]: Label=4

(10 [Label]: Number=7

(11 [ProcEnd]: Name=’_main’:Level=-1:VarSize=608:FormalSize=0

Expr=

[BinExpr]: Op=’+’:Type=INT

Left=

[Load]: Type=INT

Des=

[Field]: Name=’b’:Offset=2

BaseAddress=

[Index]: ElementSize=’6’:ElementCount=100

BaseAddress=

[VarRef]: Name=’Y’:Type=STRUCT:

Level=0:Offset=8

IndexExpr=

[Literal]: Type=INT:Value=’55’


