CSc 453

Compilers and Systems Software

19 : Code Generation |
Department of Computer Science

University of Arizona

pyright (© 2009 Christ

Compiler Phases

l Weare here!

Introduction

Lexing, Parsing Separation into
Semanic Analyss, ﬁ Basic Blocks;
Intermediate Code Flow analysis;
Generation Intermediate Code Next-use info
computation;

Q% | Xisdefined
Assembly b here:
~ g here:

Machine
Code)

Code Generation Issues Code Generation Issues. . .

©

The purpose of the code generation phase of the compiler is Intermediate Code Code Generation
to transform the intermediate code produced by the front end P\ Tree ’W‘ Iézg):alab\e
into some other code that can be executed. = ’% Selection
o i A bl

Often the the code generator will produce assembly code or] s Coie
object code which (after assembly and linking) can be directly = Absolute
executed by the hardware. ;\%:G Machine Code

_u’> C-Compiler

>

©

©

Alternatively, the code generator can generate C-code and use
the native C-compiler as the “real” back-end.

.

Or, the code generator can generate code for a “virtual Tuples
machine”, and use an interpreter to execute the code.

4

2
We expect the code generator to produce code that is as d=t2
efficient as possible.

Code Generation Issues. . .

@ The input to the code generator can be any one of the
intermediate representations we've discussed: Trees, Tuples,
Graphs,. .. The work of the code generator consists of several
(interdependent) tasks:

Instruction ArChiteCtU res

selection: Which instructions should be

©

generated?

@ scheduling: In which order should they be
generated?

Register

» allocation: Which variables should be kept in
registers?

o assignment: In which registers should they be
stored?

@ spilling: Which registers should be spilled

when?

Machine Architectures—Instruction Sets

Machine Architectures—Register Classes

3-Register: |add R1, R2, R3

[R1 := R2 + R3] (MIPS\VAX,--).

Register-Address: |add R, Addr

[R := R + Addr] (VAXx86,MC68k)

2-Register: |add R1, R2

[R1 := R1 + R2] (VAX,x86,MC68k)

2-Address: |add Addrl, Addr2

[Addr1 := Addrl + Addr2] (VAX)

3-Address: |add Addrl, Addr2, Addr3

[Addr1 := Addr2 + Addr3] (VAX)

Machine Architectures—Addressing Modes

General One set of register that can hold any type of data
(VAX, Alpha).
Integer+Float Separate integer and floating point register sets
(Sparc, MIPS).
Integer+Float+Address Separate integer, floating point, and
address register sets (MC68k).

Machine Architectures—Instruction Cost

Immediate:

Register Direct: E The contents of register R. (All.)

Register Indirect The contents of the memory address in
register R. (All)

The contents of the

Register Indirect with increment:

memory address in register R. R is incremented by the

size of the instruction (i.e. if MOVE.W (R+),Addr
moves two bytes, then R would be incremented by
2). (VAX, MC68k.)

Register Ind. with Displacement: The contents of the
memory address R+d, where R is a register and d a
(small) constant. (All architectures.)

The value of the constant X. (All architectures.)

@ The Cost of an instruction is the number of machine cycles it
takes to execute it.

©

On RISCs, most instructions take 1 cycle to execute. Loads,
stores, branches, multiplies, and divides may take longer.

©

On CISCs, the number of cycles required to execute an
instruction is

cost (Instr)+cost (Op;)+cost (0p,). cost(0p;) is the
number of cycles required to compute the addressing mode
Op;.

Example — Source

@ A straight-forward code generator considers one tuple at a
time, without looking at other tuples. The code generator is

A Sim ple EXa m ple simple, but the generated code is sub-optimal.

The Source Program:

int A[5], i, x;
main(){
for(i=1;i<=5;i++)
x=x*A[1]+A[i];

Example — Intermediate Code Example — Unoptimized MIPS Code

int A[5], i, x;

main() {for(i=1;i<=5;i++) x=x*A[i]+A[i];} 11 ;;Oil:: ! # $2
The Tuple Code s $2.1 #1
[EOEE (9) T5 := i L2: (2) TO := i
(2) TO := i (10) T6 := A[T5] 1w $2,1 #$2 1= i
(3) IF TO<6 GOTO (5) | (11) T7 := T4+T6 (3) IF i < 6 GOTO (5)
(4) GOTO (17) 12) x : slt $3,$2,6 #$3:=1<6
(6) T1 :=1 (13) 18 : bne $3,$0,L5 # IF $370 GOTO L5
(6) T2 := A[T1] (14) T9 := T8+1 (4) GOTo (17)
(7) T3 := (15) i :=T9 j L3 # GOTO L3

(8) T4 := T2%T3 (16) GOTO (2)

L5:

L3:

move
s1l
la
addu
1w

1w

mult
mflo

addu
move

sw

(5) T1 := i
$2,1

(6) T2 := A[T1]
$3,$2

$2,$3,2

$3,A

$2,$2,$3
$2,0($2)

(7) T3 := x
$3,x

(8) T4 := T2 * T3
$3,$2

$4

(13) T8 := i

$3,1

(14) T9 := T8 + 1
$2,83,1

$3,$2

(15) i :=T9

$3,1

(16) GOTO (2)
L2

o o oo

*

*

*

$2 := CONT(i)

= $2

=$3 * 4
ADDR (A)

$2 + $3
$2 := CONT(A[il)

$3 := CONT(x);

$1lo := $3 * $2
$4 := $lo

$3 := CONT(i)

$2 := 83+ 1
$3 := $2
i=$3
GOTO L2

(9) T5

1w $2,1
(10) T6
move $3,$2
s11 $2,$3,2
la $3,A

addu $2,$2,$3
1w $3,0($2)

an 17
addu $2,$4,$3

(12) x
sw $2,x

=1

$2 := CONT(i)

1= A[TS]
$2
$3 * 4
ADDR (A)
$2 + $3
CONT(A[i])
:= T4 + T6
#$2 := $4 + $3
= T7

Common Sub-expression

Elimination

Example — After CSE

@ A[T1] is computed once, and the result is kept in register $5
until it's needed the next time.

@ The generated code becomes a lot faster if we perform L5: (5) T1 := i
Common Sub-Expression Elimination (CSE) and keep the (6) T2 := A[T1]
index variable i in a register ($6) over the entire loop: move $3,$6 # = $6
s11 $2,$3,2 # = $3 * 4
1) i:=1 la $3,A # ADDR(A)
1i $6,0x1 # 86 =1 addu $2,$2,$3 # i= $2 + $3
1w $5,0($2) # $5 := CONT(A[i])
L2: (2) TO := i (7) T3 :=x
(3) IF i < 6 GOTO (5) 1w $3,x # $3 := CONT(x);
slt $3,$6,6 #$3 :=1<6 (8) T4 := T2 * T3
bne $3,$0,L5 # IF $3#0 GOTO L5 mult $3,$5 # $lo := $3 * $5
(4) GOTO (17) mflo $4 # $4 := $lo
j L3 # GOTO L3

@ After the loop we need to store $6 back into i.

(9 T5 :
(10) T6 A[T5]
(11) T7 := T4 + T6
addu $2,$4,$5 #$2 1= $4 + $5 L. .
(12) x = 17 More Optimization
sw $2,x #x = $2
(13) 18
(14) T9
(18) i :
addu $6,$6,1 # $6 := $6 + 1
(16) GOTO (2)
j L2 # GOTO L2
L3:sw $6,1 #1i:=$6

Example — More Register Allocation

L2: (2) TO := 1
(3) IF i < 6 GOTO (5)
(4) GOTO (17)

@ Since x and ADDR(A) seem to be used a lot in the loop, we sge $3,$6,6 #$3 :=1i> 6
keep them in registers ($7 and $8, respectively) as well. bne $3,$0,L3 # IF $37#0 GOTO L3
L5: (6) T1 :

@ We also reverse the comparison, which allows us to remove
one jump.

(6) T2 :
s11 $2,$6,2
addu $2,$2,$8

$3 * 4

@ The move instruction is unnecessary, so we remove it also. $2 + 8
+

1w $5,0($2) # $5 := CONT(A[il)

1) i:=1

11 $6,0x1 #$6 := 1 (7) T3 := x
(8) T4 := T2 * T3
1w $7,% # $7 CONT (x) ; mult $7,$5 # $lo := $7 * $5
la $8,A # $8 := ADDR(A) mflo $4 # §4 := $lo
Example — Summary

(9) T5 := i

(10) T6

1) 17

(12) x :
addu $7,$4,$5 # 87 1= $4 + $5 @ The unoptimized code (produced by gcc -S -g) was 28

instructions long. Our optimized code is 16 instructions.

(13) T8 : Improvement: 42%.

(14) T9 @ More importantly, in the original code there were 26

15) i : instructions inside the loop, and 2 outside. Since the loop
addu $6,$6,1 #$6 := $6 + 1 runs 5 times, we will execute 3 + 5 x 25 = 128 instructions.
X (16) GOTO (2) @ In the optimized case, we have 11 instructions in the loop and
J L2 # GOTO L2 5 outside. We will execute only 5+ 5 % 11 = 60 instructions.

L3:sw $6,1 #1:=$6 . 530
Improvement: 53%.

sw $7,x #x = $7

Instruction Selection

@ Instruction selection is usually pretty simple on RISC
architectures — there is often just one possible sequence of
. . instructions to perform a particular kind of computation.
|nstru Ct|on Select|on @ CISC's like the VAX, on the other hand, leave the compiler
with more choices: ADD2 1, R1 ADD3 R1, 1, R1 INC R1 all
add 1 to register R1.

V %2 — Unoptimized Sparc Code

set V, %00

1d [%00], %00
set 2, %ol
call .mul, 2
nop

%00 := ADDR(V);
%00 := CONT(V);
%ol = 2;

%00 := %00 * %ol;
Empty delay slot

* F o o

Instruction Scheduling

V % 2 — Better Instr. Selection

@ The Sparc has a library function .mul and a hardware
multiply instruction smul:

set V, %00 @ Instruction scheduling is important for architectures with

14 [%001, %00 several functional units, pipelines, delay slots. l.e. most
smul %00, 1, %00 # %00 := %00 * %ol; modern architectures.
@ The Sparc (and other RISCs) have branch delay slots. These
V %2 — Even Better Instr. Selection are instructions (textually immediately following the branch)
@ The Sparc also has hardware shift instructions (s11, srl). that are “executed for free” during the branch.
To multiply by 2 we shift i steps to the left. V %2 — Unoptimized Sparc Code

set V, %00 1d [%00], %00 # %00 := CONT(V);
1d [%001, %00 set 2, %ol # Yol := 2;
s11 %00, 1, %00 # %00 := %00 * 2; call .mul, 2 # %00 := %00 * %ol;

nop # Empty delay slot

Instruction Scheduling Instruction Scheduling. ..

V %2 — Unoptimized Sparc Code @ The Sparc's integer and floating point units can execute in
parallel. Integer and floating point instructions should
1d [%001, %00 # %00 := CONT(V); therefore be reordered so that operations are interleaved.
set 2, %ol # Yol 2;
call .mul, 2 # %00 := %00 * %ol; int a, b, c; double x, y, z;
nop # Empty delay slot { a=b-c;
. c=a+b;
V % 2 — Better Instr. Scheduling b=a+c;
14 [%00], %00 # %00 := CONT(V); yExrx
call .mul, 2 zZ=x*y;
set 2, Yol # Filled delay slot . x=y/z
int a, b, c; double x, y, z;
{ a=b-c;c=a+b;b=a+c;
y=x*x;z=x+y;x=y/ z;}
cc -02 cc -03
set b,%03 fmuld %£30,%£30,%f28 H
sub %00,%01,%01 set c,%ol RegISter
set a,%o0 1d [%oll,%o2 1 1 illy
add %o4,%05,%04 faddd %£30,%£28,%£30 Allocatlon/ASSIgnment/SpI”Ing
add %00,%02,%00 set b,%00
set x, %00 1d [%00] , %04
fmuld %£0,%£2,%£0 set z,%gl
sethi %hi(z),%02 sub %o04,%02,%02
faddd %£6,%£8,%f6 fdivd %£28,%£30,%f2
fdivd %£12,%f14,%f12 | add %o04,%02,%04
add %02,%04,%05

Registers — Why do we need them? Register — When do we use them?

. . 5 @ Instructions take operands in regs.
€ We only need 4-7 bits to access a register, but 3264 bits to i P .g
access a memory word @ Intermediate results are stored in regs.
@ Hence, a one-word instruction can reference 3 registers but a © Procedure arguments are passed in regs.
two-word instruction is necessary to reference a memory word. Q Loads and Stores are expensive = keep variables in regs for as

© Registers have short access time. long as possible.

© Common sub-expressions are stored in regs.

Register Allocation/Assignment Register Assignment

. . @ Sparc passes it's first 6 arguments in registers
Register Allocation: %00, %01 ,%02,%03, %ok, %05.
@ First we have to decide which variables should reside in

) . - @ If a value is used twice, first in a computation and then in a
registers at which point in the program.

procedure call, we should allocate the value to the appropriate
@ Variables that are used frequently should be favored. procedure argument register.

Register Assignment:

@ Secondly, we have to decide which physical registers should a=b+15; /% < b is used here /x

hold each of these variables. P(bﬁ; by /* < and here. */
@ Some architectures have several different register classes, 4 N N .
groups of registers that can only hold one type of data: 1d n[/ufp-S] ; %00 # fOO ?UNT (©);
s MIPS & Sparc have floating point and integer registers; add 700,15, %ol # Tlol i= 700 + 15
» MC68k has address, integer, and floating point, etc st %oi, [4fp-4] #a := Yol;

call P,1 # P(%00)

Register Spilling Register Spilling — Example

@ We may have 8 | 16 | 32 regs available. @ Assume a machine with registers R1--R3.
@ When we run out of registers (during code generation) we o R1 holds variable a; R2 holds b, R3 holds c, and R4 holds d.
need to pick a register to spill. l.e. in order to free the Generate code for:
register for its new use, it's current value first has to be stored .
. x =a+ b; # < Which reg for x?
in memory.
y=x+c;

@ Which register should be spilt? Least recently used, Least
frequently used, Most distant use, ... (take your pick).

@ Which register should be spilt to free a register to hold x?

Register Allocation Example Register Spilling Example

FOR i :=1 TO n DO

B[5,i] := b * b * b; FOR i := 1 TO 100000 DO
FOR j := 1 TO n DO Als,i] b;
FOR k := 1 TO n DO FOR j 1 TO 100000 DO
Ali,3] := A[i,k] * Alk,jl; A[j,i] := <Complicated Expression>;
2 Registers Available: k and ADDR(A) in registers. (Prefer st Attempt (4 Regs available):
variables in inner loops). Allocation/Assignment: i in Ry, j in Rp, ADDR(A) in R,
4 Registers Available: k, ADDR(A), j, and i in registers. (Prefer ADDR(A[5,.]) in Ry.
index variables). Spilling: Spill Ry in the inner loop to get enough registers to
5 Registers Available: k, ADDR(A), j, i, and b in registers. evaluate the complicated expression.

(Prefer most frequently used variables).

Register Spilling Example. ..

FOR i := 1 TO 100000 DO

ALS,3) o= b Summary
FOR j := 1 TO 100000 DO
A[j,i] := <Complicated Expression>;

2nd Attempt (4 Regs available):
Allocation/Assignment: i in Ry, j in Rp, ADDR(A) in Rj3.
Spilling: No spills. But ADDR(A[5,1]) must be loaded every
time in the outer loop.

Readings and References Summary

©

Instruction selection picks which instruction to use, instruction
scheduling picks the ordering of instructions.

@ Read Louden:
Basic code generation 407-416
Data structures 416-428
Control structures 428-436
Procedure calls 436-443

©

Register allocation picks which variables to keep in registers,
register assignment picks the actual register in which a
particular variable should be stored.

©

We prefer to keep index variables and variables used in inner
loops in registers.

When we run out of registers, we have to pick a register to
spill, i.e. to store back into memory. We avoid inserting spill
code in inner loops.

@ Read the Dragon book:
Introduction 513-521
Basic Blocks 528-530
Flow Graphs 532-534

©

Summary. ..

@ Code generation checklist:
@ s the code correct?
@ Are values kept in registers for as long as possible?
© Is the cheapest register always chosen for spilling?
@ Are values in inner loops allocated to registers?
@ A basic block is a straight-line piece of code, with no jumps in
or out except at the beginning and end.
@ Local code generation considers one basic block at a time,
global one procedure, and inter-procedural one program.

