
CSc 453 — Compilers and Systems Software

12 : Semantic Analysis IV

Christian Collberg

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2009 Christian Collberg

September 27, 2009

1

Optimizing Tree-Walk Evaluators

2 Optimizing Tree-Walkers

• Storing every attribute in the AST may take up a lot of space. Sometimes we can make some opti-
mizations:

1. Inherited attributes can be passed as input arguments to the recursive procedures.

2. Synthesized arguments can be returned as function results (or as reference parameters).

• This won’t work for output attributes, attributes that will be needed by later compilation phases.

3

PROCEDURE Program(n: Node);

Std := {INT,REAL,CHAR,TRUNC,FLOAT};
Decl(n.DeclSeq, ⇓{}, ⇑IdsOut, ⇓Std);
xEnv := cons(IdsOut,StdEnv);

Stat(n.StatSeq, ⇓ xEnv);

PROCEDURE Decl(n:Node; IdsIn:SyTabT;

VAR IdsOut:SyTabT; Env:EnvT);

· · ·

PROCEDURE Assign(n: Node; Env:EnvT);

Des(⇓Env, ⇑DesType);
Expr⇓(Env, ⇑ExprType);
IF DesType 6= ExprType THEN · · ·

1

4

Dynamic Tree-Walk Evaluators

5 Dynamic Tree-Walkers

• The major problem with building a tree-walk evaluator is to find an order (a visit sequence) in which
to traverse the AST and evaluate the attributes.

• So far, we have built Static Evaluators. With this type of evaluator the visit sequence is determined
by the compiler designer at compiler construction time.

• If we’re not concerned with efficiency, then we can build a Dynamic Evaluator, one for which the
visit sequence is determined at compile time (i.e. when we’re performing semantic analysis).

6 Dynamic Tree-Walkers. . .

1. Build the abstract syntax tree during parsing.

2. Build the dependency graph for the attributes of the tree.

• The nodes of the graph are the attributes of the tree.

• There’s an edge from node a to node b if b depends on a, i.e. if a has to be computed before b.

3. Perform a topological sort of the dependency graph.

4. If a cycle is detected abort the compile: “Cyclic evaluator, compilation aborted”.

5. Otherwise, evaluate the tree attributes in the order computed.

7 Dynamic Tree-Walkers. . .

Topological

Sort

S.a S.b

X.c X.d

Y.e Y.f

X.h Z.g

Construct

Dependency Graph

Y ZX

x y z

Sa

c

b

d e f h g

X.d S.b Y.e Y.fZ.gS.a X.h X.c

2

8

H

Locals

Level=0

Name="P"

StatSeq

Next

VarDecl Name="Z"

Level=0 Next

Name="Q"

StatSeq

Next

ProcDecl

Locals

Level=1

VarDecl Name="Y"

Level=1 Next

VarDecl Name="X"

Level=2 Next

NoDecl

Level=2

Program Name="M"

DeclSeq StatSeq NoDecl

Level=0

NoDecl

Level=1
B

C

D E

F

G H

A

Perform

sort
toplogical

Build
dependency
graph

C G H FDA B

A
B

C

D
E

F

G

ProcDecl

9

H

B

C

D E

F

G H

A

A’s Level−
attribute

F’s Level−
attribute

Build
dependency
graph

C G H FDA B

Perform

sort
toplogical

A
B

C

D
E

F

G

10

Forward References

11 Forward References

• Some languages (Ada, Modula-3) allow declarations to come in an arbitrary order.

• Modula-2 allows forward references for procedures and variables, but types and constants must be
declared before use.

PROGRAM M;

PROCEDURE P ();

VAR X : INTEGER;

BEGIN

X := Y + 1; ⇐ Forward ref to Y!
Q(); ⇐ Forward ref to Q!

END P;

VAR Y : INTEGER;

PROCEDURE Q (); BEGIN END Q;

BEGIN END M;

3

12 Forward References. . .

• We have to process declarations two times. The first time we build (partial) symbol tables, the second
time we build environments and process statements.

• mIds1:SyTabT is built during pass 1, mIds2:SyTabT during pass 2.

• mIds1:SyTabT will basically only store the names and kinds of identifiers, to be used during name
lookup.

• mIds2:SyTabT will store complete symbols.

• Statements are processed in a third pass.

PROCEDURE Program (n: Node);

Program Pass1();

Program Pass2();

Program Pass3();

END;

13 Forward References — First pass

PROCEDURE Program Pass1 (n: Node);

StdEnv := {INT,REAL,CHAR,TRUNC,FLOAT};
n.DeclSeq.IdsIn1:= {};
Decl Pass1(n.DeclSeq);

END;

PROCEDURE Decl Pass1 (n: Node);

IF n.Kind=ProcDecl THEN

ProcDecl Pass1(n);

ELSIF n.Kind=VarDecl THEN

VarDecl Pass1(n);

ELSIF · · · ENDIF

END;

14

PROCEDURE VarDecl Pass1 (n: Node);

-- Check for multiple declaration of the variable.

Sy := (Name=n.Id,Kind=VAR); ⇐No Type!

n.Next.IdsIn1 := n.IdsIn1 ∪ {Sy};
Decl Pass1(n.Next);

n.IdsOut1:=n.Next.IdsOut1;

END;

PROCEDURE ProcDecl Pass1 (n: Node);

n.Formals.IdsIn1 := {};
Decl Pass1(n.Formals);

n.Locals.IdsIn1 := n.Formals.IdsOut1;

Decl Pass1(n.Locals);

4

Sy:=(Name=n.Id,Kind=PROC);⇐No Formals!

n.Next.IdsIn1 := n.IdsIn1 ∪ {Sy};
Decl Pass1(n.Next);

n.IdsOut1:=n.Next.IdsOut1;

END;

15 Forward References — Second Pass

PROCEDURE Program Pass2 (n: Node);

StdEnv := {INT,REAL,CHAR,TRUNC,FLOAT};
n.DeclSeq.Env := cons(n.DeclSeq.IdsOut1,StdEnv);

n.DeclSeq.IdsIn2:= {};
Decl Pass2(n.DeclSeq);

END;

PROCEDURE VarDecl Pass2 (n: Node);

-- Check if the type is declared.

T := Lookup(n.TypeName,n.Env);

Sy := (Name=n.Id,Kind=VAR, Type=T); ⇐ Type!

n.Next.IdsIn2 := n.IdsIn2 ∪ {Sy};
Decl Pass1(n.Next);

n.IdsOut2:=n.Next.IdsOut2;

END;

16

PROCEDURE ProcDecl Pass2 (n: Node);

-- Use symbols from pass 1 as part of

-- the env for locals and formals.

n.Locals.Env := n.Formals.Env :=

cons(n.Locals.IdsOut1, n.Env);

-- Build new sy tab from locals & formals.

n.Formals.IdsIn2:={};
Decl Pass2(n.Formals);

n.Locals.IdsIn2 := n.Formals.IdsOut2;

Decl Pass2(n.Locals);

-- Build new sytab entry for the procedure. Include formals.

Sy := (Name=n.Id,Kind=PROC, Formals=n.Formals.IdsOut2);

n.Next.IdsIn2 := n.IdsIn2 ∪ {Sy};
Decl Pass2(n.Next);

n.IdsOut2:=n.Next.IdsOut2;

17 Forward References — Third pass

PROCEDURE Program Pass3 (n: Node);

n.DeclSeq.Env := n.StatSeq.Env :=

cons(n.DeclSeq.IdsOut2, StdEnv);

Decl Pass3(n.DeclSeq);

5

Stat(n.StatSeq);

END;

PROCEDURE Decl Pass3 (n: Node);

IF n.Kind=ProcDecl THEN

ProcDecl Pass3(n);

ENDIF

END;

18

PROCEDURE ProcDecl Pass3 (n: Node);

n.Locals.Env := n.StatSeq.Env :=

cons(n.Locals.IdsOut2, n.Env);

Decl Pass3(n.Locals);

Stat(n.StatSeq);

n.Next.Env:=n.Env; Decl Pass3(n.Next);

END;

19 Forward References — Example 1

Locals Formals

ProcDecl Id=Q Next

StatSeqLocals

NoDecl
P

Q Y

X:=Y+1 Q()

NoDeclX IdsOut=

VarDecl

Next

Id=X

StatSeqDeclSeq

Program Id=M

Formals

ProcDecl Id=Q Next

StatSeqLocals

NoDeclX:=Y+1 Q() P
Q Y

X

IdsOut=

Formals

ProcDecl Id=P Next

StatSeqLocals

IdsOut=

VarDecl

Next

Id=X

NoDecl

StatSeqDeclSeq

Program Id=M

IdsOut=

VarDecl Id=Y

Next

IdsOut=

VarDecl Id=Y

Next

Pass 3

Pass 1/2

IdsOut=

Formals

ProcDecl Id=P Next

StatSeq

20 Forward References — Example 2

• Why can’t we process the statements during the first pass? Types complicate things. Before we can
process the call to P at 2 , we need to have processed P’s formals at 1 . We can’t process P’s formals

until we’ve seen U at 4 .

• We might be able to do the first pass as the AST is being built, or do pass 2 as we return from the
pass 1 recursion.

6

PROCEDURE P (S : U); ⇐ 1

BEGIN · · · END P;

PROCEDURE Q ();

VAR K : T;

BEGIN P(K); ⇐ 2 END Q;

TYPE T = U; ⇐ 3

TYPE U = INTEGER; ⇐ 4

21

Pass 1

P
Q T U

StatSeqDeclSeq

Program Id=M

Formals

ProcDecl Id=Q Next

StatSeqLocals

Q

Actuals

ProcCall

K
K

IdsOut1

Type Id=T

Next

TypeKind=Equiv
Equiv = U

IdsOut1

Type Id=U

Next

TypeKind=Equiv
Equiv=INTEGER NoDecl

VarDecl

Next

Id=K

IdsOut=

TypeName = T

IdsOut1=

Formals

ProcDecl Id=P Next

StatSeqLocals

Formal Id=K

TypeName= U

7

22

Locals

StatSeqDeclSeq

Program Id=M

Formal Id=K

TypeName= U

Env=

Env=

Env=

P
Q T U

P
Q T U

{(P,PROC,FORM=[K]),(Q,PROC),
(T,EQUIV=U),(U,EQUIV=INT)}

Formals

ProcDecl Id=Q Next

StatSeqLocals

Q

Actuals

ProcCall

K
K

VarDecl

Next

Id=K

IdsOut=

TypeName = T

Env= Env= P
Q T U

P
Q T U

IdsOut1

Type Id=T

Next

TypeKind=Equiv
Equiv = U

IdsOut1

Type Id=U

Next

TypeKind=Equiv
Equiv=INTEGER NoDecl

Pass 2

IdsOut2=

Formals

ProcDecl Id=P Next

StatSeq

23

Locals

StatSeqDeclSeq

Program Id=M

Env=

{(P,PROC,FORM=[K]),(Q,PROC),
(T,EQUIV=U),(U,EQUIV=INT)}

Env=Formals

ProcDecl Id=Q Next

StatSeqLocals

Q

Actuals

ProcCall

K

Env=

{(P,PROC,FORM=[K]),(Q,PROC),
(T,EQUIV=U),(U,EQUIV=INT)}

IdsOut1

Type Id=T

Next

TypeKind=Equiv
Equiv = U

IdsOut1

Type Id=U

Next

TypeKind=Equiv
Equiv=INTEGER NoDecl

Env= Env=

Pass 3

Formals

ProcDecl Id=P Next

StatSeq

24

Summary

8

25 Summary

• In programming languages that allow forward references (the use of an identifier before it is declared)
we need to process the tree twice.

• Sometimes we may perform multiple traversals even for languages that are definition-before-use. Each
traversal will compute a different subset of the attributes. Even if this is less efficient than performing
a single traversal, it may lead to an evaluator that’s easier to read and modify.

• The kinds of evaluators we have been building are called static evaluators, because the order in
which the attributes are evaluated is determined at compiler construction time.

26 Summary. . .

• In a dynamic evaluator, the attribute evaluation order is determined at compile time. The idea
is to build an attribute dependency graph from the AST (this graph encodes how one attribute
may depend on [use the value of] another attribute), and using topological sorting to compute a valid
evaluation order.

• It is not necessary to always store every attribute explicitly in the tree. Instead, we can pass them
as arguments to the evaluator procedures. Inherited attributes will be passed by value, synthesized
attributes by reference (since they return data back to the calling routine).

27 Summary. . .

• Some attributes (such as types of expressions and sizes of variables) will be needed after semantic
analysis by the code generator. These attributes are called output attributes and must be stored
explicitly in the tree.

• Some languages allow anonymous types, types for which the programmer need not give an explicit
name. The compiler has to invent it’s own names for such types. Example: TYPE T=RECORD A:POINTER

TO CHAR; END;. The compiler may give the name T$1 (a name that no user-defined type can have) to
POINTER TO CHAR.

28

Homework

29 Homework. . .

• Build an AST for the program below.

• Show – in detail – how the symbol tables and environments are built and how the statements are
checked for type correctness. Assume that the language allows arbitrary declaration order.

9

PROGRAM M;

PROCEDURE P (S : T);

BEGIN S := 5; END P;

PROCEDURE Q ();

VAR K : T;

BEGIN P(K); END Q;

TYPE T = INTEGER;

BEGIN Q(); END.

30 Homework

• Build an AST for the program below. Show – in detail – how the assignment statements are checked
for type correctness.

PROGRAM M;

TYPE A = RECORD X : ARRAY [1..10] OF INTEGER; END;

TYPE B = POINTER TO A;

TYPE C = ARRAY [1..2] OF B;

VAR V : C;

BEGIN

V[1]^.X[4] := "C";

V[2].X[4] := 5;

END.

10

