
CSc 453 — Compilers and Systems Software

15 : Intermediate Code III

Christian Collberg

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2009 Christian Collberg

October 18, 2009

1

Basic Blocks and Flow Graphs

2 Control Flow Graphs

• We divide the intermediate code of each procedure into basic blocks. A basic block is a piece of straight
line code, i.e. there are no jumps in or out of the middle of a block.

• The basic blocks within one procedure are organized as a (control) flow graph, or CFG. A flow-graph
has

– basic blocks B1 · · ·Bn as nodes,

– a directed edge B1 → B2 if control can flow from B1 to B2.

– Special nodes ENTER and EXIT that are the source and sink of the graph.

• Inside each basic block can be any of the IRs we’ve seen: tuples, trees, DAGs, etc.

1



3

ENTER

Source node

EXIT

Sink node

B2

if ... goto B2

B3

if ... goto B3

B4

if ... goto B6

B6

B5

goto B2

x := a * 5

B1

y := Z[x]

a := a + 1

Straight 

line code

Block

If-

Statement
Loop

Basic

4 Control Flow Graphs. . .

Source Code:

X := 20; WHILE X < 10 DO

X := X-1; A[X] := 10;

IF X = 4 THEN X := X - 2; ENDIF;

ENDDO; Y := X + 5;

Intermediate Code:

(1) X := 20

(2) if X>=10 goto (8)

(3) X := X-1

(4) A[X] := 10

(5) if X<>4 goto (7)

(6) X := X-2

(7) goto (2)

(8) Y := X+5

5 Control Flow Graphs. . .

Flow Graph:
ENTER

EXIT
goto B2

B6

X := X − 2;
B5

Y := X + 5;
B4

X := X−1;

A[X] := 10;

if X <> 4 goto B6

if x >= 10 goto B4
B2

B3

X := 20;
B1

2



6

:=

>=

10 B4X

X 4 B6

<>

EXIT

X

−X

2

goto

B2

:=

X

Y +

5

X

:=

20

ENTER

:=

X

−

1

X

[]

A X

:=

10

B2

B6

B4

B5

B3

B1

7

Constructing Basic Blocks

8 Constructing Basic Blocks

• Assume that the input is a list of tuples. How do we find the beginning and end of each basic block?

1. First determine a set of leaders, the first tuple of basic blocks:

(a) The first tuple is a leader.

(b) Tuple L is a leader if there is a tuple if ...goto L or goto L .

(c) Tuple L is a leader if it immediately follows a tuple if ...goto B or goto B .

2. A basic block consists of a leader and all the following tuples until the next leader.

9 Basic Blocks. . .

P := 0; I := 1;

REPEAT

P := P + I;

IF P > 60 THEN

P := 0;

I := 5

ENDIF;

I := I * 2 + 1;

UNTIL I > 20;

K := P * 3

(1) P := 0 ⇐ (Rule 1.a)

(2) I := 1

(3) P := P + I ⇐ (Rule 1.b)

(4) IF P <= 60 GOTO (7)

(5) P := 0 ⇐ (Rule 1.c)

(6) I := 5

(7) T1 := I * 2 ⇐ (Rule 1.b)

(8) I := T1 + 1

(9) IF I <= 20 GOTO (3)

(10) K := P * 3 ⇐ (Rule 1.c)

3



10 Basic Blocks. . .

B1: [(1) P:=0; (2) I:=1]

B2: [(3) P:=P+I;

(4) IF P<=60 GOTO B4 ]

B3: [(5) P:=0; (6) I:=5]

B4: [(7) T1:=I*2; (8) I:=T1+1;

(9) IF I<=20 GOTO B2 ]

B5: [(10) K:=P*3]

B4

P := 0

I := 1

B1

K := P * 3 B5

I := T1 + 1

IF I <= 20 GOTO B2

T1 := I * 2

B3

I := 5

P := 0

P := P + I

IF P <= 60 GOTO B4

B2

11

Summary

12 Readings and References

• Read Louden:

Flow Graphs 475–477

• Or, read the Dragon book:

Basic Blocks 528–530

Flow Graphs 532–534

13 Summary

• A Control Flow Graph (CFG) is a graph whose nodes are basic blocks. There is an edge from basic
block B1 to B2 if control can flow from B1 to B2.

• Control flows in and out of a CFG through two special nodes ENTER and EXIT.

• We construct a CFG for each procedure. This representation is used during code generation and
optimization.

• Java bytecode is a stack-based IR. It was never intended as an UNCOL, but people have still built
compilers for Ada, Scheme and other languages that generate Java bytecode. It is painful.

• Microsoft’s MSIL is the latest UNCOL attempt.

14

Homework

4



15 Homework I

Translate the program below into quadruples. Identify beginnings and ends of basic blocks. Build the control
flow graph.

PROGRAM P;

VAR X : INTEGER; Y : REAL;

BEGIN

X := 1; Y := 5.5;

WHILE X < 10 DO

Y := Y + FLOAT(X);

X := X + 1;

IF Y > 10 THEN Y := Y * 2.2; ENDIF;

ENDDO;

END.

16 Exam Question

• Draw the control flow graph for the tuples.

int A[5],x,i,n;

for (i=1; i<=n; i++) {
if (i<n) {
x = A[i];

} else {
while (x>4) {
x = x*2+A[i];

};
};
x = x+5;

}

(1) i := 1

(2) IF i>n GOTO (14)

(3) IF i>=n GOTO (6)

(4) x := A[i]

(5) GOTO (11)

(6) IF x<=4 GOTO (11)

(7) T1 := x*2

(8) T2 := A[i]

(9) x := T1+T2

(10) GOTO (6)

(11) x := x+5

(12) i := i+1

(13) GOTO (2)

5


