
CSc 453 — Compilers and Systems Software

21 : Code Generation II

Christian Collberg

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2009 Christian Collberg

November 1, 2009

1

Next-Use Information

2 Overview

• We need to know, for each use of a variable in a basic block, whether the value contained in the variable
will be used again later in the block.

• If a variable has no next-use we can reuse the register allocated to the variable.

• We also need to know whether a variable used in a basic block is live-on-exit, i.e. if the value contained
in the variable has a use outside the block. The global data-flow analysis we talked about in the
optimization unit can be used to this end.

• If no live-variable analysis has been done we assume all variable are live on exit from the block. This
will mean that when the end of a basic block has been reached, all values kept only in registers will
have to be stored back into their corresponding variables’ memory locations.

3 Basic Block Code Generation

X := Z + Y

X := Y + Z
Z := Z * 5
T7 := Z + 1
Y := Z − T7

• Generate code one basic block at a time.

• We don’t know which path through the flow-graph has taken us to this basic block. ⇒ We can’t assume
that any variables are in registers.

1

4 Basic Block Code Generation. . .

X := Z + Y

X := Y + Z
Z := Z * 5
T7 := Z + 1
Y := Z − T7

• We don’t know where we will go from this block. ⇒ Values kept in registers must be stored back into
their memory locations before the block is exited.

into their memory locations.

Load variables into registers.

Compute....

Store register values back

5 Next-Use Information

X := Z + Y

X := Y + Z
Z := Z * 5
T7 := Z + 1
Y := Z − T7

• We want to keep variables in registers for as long as possible, to avoid having to reload them whenever
they are needed.

• When a variable isn’t needed any more we free the register to reuse it for other variables. ⇒ We must
know if a particular value will be used later in the basic block.

6 Next-Use Information. . .

X := Z + Y

X := Y + Z
Z := Z * 5
T7 := Z + 1
Y := Z − T7

• If, after computing a value X, we will soon be using the value again, we should keep it in a register. If
the value has no further use in the block we can reuse the register.

7 Next-Use Information. . .

X is live at (5)
(5) X := · · ·

... (no ref to X) ...

(14) · · · := · · · X · · ·

• X is live at (5) because the value computed at (5) is used later in the basic block.

• X’s next use at (5) is (14).

• It is a good idea to keep X in a register between (5) and (14).

2

8 Next-Use Information. . .

X is dead at (12)
(12) · · · := · · · X · · ·

... (no ref to X) ...

(25) X := · · ·

• X is dead at (12) because its value has no further use in the block.

• Don’t keep X in a register after (12).

9 Next-Use Information – Example

Intermediate Live/Dead Next Use

Code x y z t7 x y z t7

(1) x := y+z L D D (2)

(2) z := x∗5 D L (3)

(3) t7 := z+1 L L (4) (4)

(4) y := z-t7 L L D (5) (5)

(5) x := z+y D D D

• x, y, z are live on exit, t7 (a temporary) isn’t.

10

Algorithm

11 Next-Use Algorithm

• A two-pass algorithm computes next-use & liveness information for a basic block.

• In the first pass we scan over the basic block to find the end. Also:

1. For each variable X used in the block we create fields X.live and X.next use in the symbol table.
Set X.live:=FALSE; X.next use:=NONE.

2. Each tuple (i) X:=Y+Z stores next-use & live information. We set

(i).X.live:=(i).Y.live:=(i).Z.live:=FALSE and (i).X.next use:=(i).Y.next use:= (i).Z.next use:=

NONE.

12 Next-Use Algorithm. . .

Basic Block

Kind=VAR Type=Int

Live=TRUE NextUse=(5)

Symbol Table Entry for X

(5) X.Live=FALSE X.NextUse=_

(4) X.Live=TRUE X.NextUse=(5)

Y.Live=FALSE Y.NextUse=_

Tuple

Info.

(4) X := Y + 3
(5) Z := X + 9

ID=X

3

13

1. Scan forwards over the basic block:

• Initialize the symbol table entry for each used variable, and the tuple data for each tuple.

2. Scan backwards over the basic block. For every tuple (i): x := y op z do:

(a) Copy the live/next use-info from x, y, z’s symbol table entries into the tuple data for tuple (i).

(b) Update x, y, z’s symbol table entries:

x.live := FALSE;
x.next use := NONE;
y.live := TRUE;
z.live := TRUE;
y.next use := i;
z.next use := i;

14

Example

15 Next-Use Example – Forward Pass

SyTab-Info Instr.-Info

live next use live next use

i x y z x y z x y z x y z

(1) x:=y+z F F F F F F

(2) z:=x*5 F F F F F F

(3) y:=z-7 F F F F F F

(4) x:=z+y F F F F F F

16 Next-Use Example – Backwards Pass

SyTab-Info Instr.-Info

live next use live next use

i x y z x y z x y z x y z

(4) x := z+y F T T 4 4 F F F

(3) y := z-7 F F T 3 F T T 4 4

(2) z := x*5 T F F 2 F F T 3

(1) x := y+z F T T 1 1 T F F 2

• The data in each row reflects the state in the symbol table and in the data section of instruction i

after i has been processed.

17

Register & Address Descriptors

4

18 Register & Address Descriptors

• During code generation we need to keep track of what’s in each register (a Register Descriptor).

• One register may hold the values of several variables (e.g. after x:=y).

• We also need to know where the values of variables are currently stored (an Address Descriptor).

• A variable may be in one (or more) register, on the stack, in global memory; all at the same time.

19 Register & Address Descriptors. . .

Address Descriptor

Id Memory Regs.

x fp(16) {r0}
y fp(20) {}
z 0x2020 {r1, r3}
t1 {r0}

Register Descriptor

Reg Contents

r0 {x, t1}
r1 {z}
r2 {}
r3 {z}

20

A Simple Code Generator

21 A Simple Code Generator

A flowgraph: We generate code for each individual basic block.

An Address Descriptor (AD): We store the location of each variable: in register, on the stack, in global
memory.

A Register Descriptor (RD): We store the contents of each register.

Next-Use Information: We know for each point in the code whether a particular variable will be refer-
enced later on.

We need:

GenCode(i: x := y op z): Generate code for the i:th intermediate code instruction.

GetReg(i: x := y op z): Select a register to hold the result of the operation.

22 Machine Model

• We will generate code for the address-register machine described in the book. It is a CISC, not a RISC;
it is similar to the x86 and MC68k.

• The machine has n general purpose registers R0, R1, ..., Rn.

MOV M, R Load variable M into register R.
MOV R, M Store register R into variable M.
OP M, R Compute R := R OP M, where OP is one of ADD,

SUB, MUL, DIV.
OP R2, R1 Compute R1 := R1 OP R2, where OP is one of ADD,

SUB, MUL, DIV.

5

23

GenCode((i): X := Y OP Z)

• L is the location in which the result will be stored. Often a register.

• Y’ is the most favorable location for Y. I.e. a register if Y is in a register, Y’s memory location
otherwise.

GenCode((i): X := Y)

• Often we won’t have to generate any code at all for the tuple X := Y; instead we just update the
address and register descriptors (AD & RD).

GetReg(i: X := Y op Z)

• If we won’t be needing the value stored in Y after this instruction, we can reuse Y’s register.

24 GenCode((i): X := Y OP Z)

1. L := GetReg(i: X := Y op Z).

2. Y’ := “best” location for Y. IF Y is not in Y’ THEN gen(MOV Y’, L).

3. Z’ := “best” location for Z.

4. gen(OP Z’, L)

5. Update the address descriptor: X is now in location L.

6. Update the register descriptor: X is now only in register L.

7. IF (i).Y.next use=NONE THEN update the register descriptor: Y is not in any register. Same for
Z.

25 GenCode((i): X := Y)

• IF Y only in mem. location L THEN

– R := GetReg(); gen(MOV Y, R);

– AD: Y is now only in reg R.

– RD: R now holds Y.

• IF Y is in register R THEN

– AD: X is now only in register R.

– RD: R now holds X.

– IF (i).Y.next use=NONE THEN RD: No register holds Y.

• At the end of the basic block store all live variables (that are left in registers) in their memory locations.

26

Register Allocation

6

27 GetReg(i: X := Y op Z)

1. IF

• Y is in register R and R holds only Y

• (i).Y.next use=NONE

THEN RETURN R;

2. ELSIF there’s an empty register R available THEN RETURN R;

3. ELSIF

• X has a next use and there exists an occupied register R

THEN Store R into its memory location and RETURN R;

4. OTHERWISE RETURN the memory location of X.

28

Code Generation Example

29 Code Generation Example

• The state in RD and AD is after the operation has taken place.

• Only two registers are available, r0 and r1.

• In the last instruction we select r0 for spilling.

• Note that x and y are kept in registers until the end of the basic block. At the end of the block, they
are returned to their memory locations.

30 Code Generation Example. . .

Interm. Code Machine

(1) x := y + z MOV y, r0

ADD z, r0

(2) z := x ∗ 5 MUL 5, r0

(3) y := z - 7 MOV r0, r1

SUB 7, r1

(4) x := z + y MOV r0, z

ADD r1, r0

MOV r1, y

MOV r0, x

7

31 Code Generation Example. . .

Interm. Machine RD AD Live

x y z

x := y + z MOV y, r0 r0 ≡ x x ≡ r0 T F T

ADD z, r0

z := x ∗ 5 MUL 5, r0 r0 ≡ z z ≡ r0 F T

y := z - 7 MOV r0, r1 r0 ≡ z z ≡ r0 T T

SUB 7, r1 r1 ≡ y y ≡ r1

32 Code Generation Example. . .

Interm. Machine RD AD Live

x := z + y MOV r0, z r0 ≡ z z ≡ mem T T T

z ≡ r0

r1 ≡ y y ≡ r1

ADD r1, r0 r0 ≡ x x ≡ r0

r1 ≡ y y ≡ r1

z ≡ mem

MOV r1, y y ≡ mem

MOV r0, x x ≡ mem

33

Summary

34 Readings and References

• Read Louden:

Generation of Intermediate Code 407–442

Machine Code Generation 453–467

• This lecture is taken from the Dragon book:

Next-Use Information 534–535

Simple Code Generation 535–541.

Address & Register Descriptors 537

35 Summary

• Register allocation requires next-use information, i.e. for each reference to x we need to know if x’s
value will be used further on in the program.

• We also need to keep track of what’s in each register. This is sometimes called register tracking.

• We need a register allocator, a routine that picks registers to hold the contents of intermediate com-
putations.

8

