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What do we Optimize?

5 What do we Optimize?

1. Optimize everything, all the time. The problem is that optimization interferes with debugging. In fact,
many (most) compilers don’t let you generate an optimized program with debugging information. The
problem of debugging optimized code is an important research field.

Furthermore, optimization is probably the most time consuming pass in the compiler. Always opti-
mizing everything (even routines which will never be called!) wastes valuable time.

2. The programmer decides what to optimize. The problem is that the programmer has a local view of
the code. When timing a program programmers are often very surprised to see where most of the time
is spent.

6

3. Turn optimization on when program is complete. Unfortunately, optimizers aren’t perfect, and a
program that performed OK with debugging turned on often behaves differently when debugging is off
and optimization is on.

4. Optimize inner loops only. Unfortunately, procedure calls can hide inner loops:

PROCEDURE P(n);

BEGIN

FOR k:=1 TO n DO · · · END;

END P;
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FOR i:=1 TO 10000 DO P(i) END;
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5. Use profiling information to guide what to optimize.

data

Compiler 

Front−End
Optimizer

Code

Generator

"Carefully

chosen input"
Executable

Program

Profile

6. Runtime code generation/optimization. We delay code generation and optimization until execution
time. At that time we have more information to guide the otpimizations:

Specialized Code

Front−End

Q [...]

P [...]

Interm.

Code Table

Compiled

Code Table

Q [...]

P(_,3) [...]

P [...]

Interm.

Code

Gen spec. code

for P(_,3), 

optimize, then

call

Execution time

call P(x,3)

Compiler
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Local vs. Global vs. Inter-procedural
Optimization

9 Local, Global, Inter-Proc.

• Some compilers optimize more aggressively than others. An aggressive compiler optimizes over a large
piece of code, a simple one only considers a small chunk of code at a time.

Local Optimization:

• Consider each basic block by itself. (All compilers.)

Global Optimization:

• Consider each procedure by itself. (Most compilers.)

Inter-Procedural Optimization:

• Consider the control flow between procedures. (A few compilers do this.)

10 Local Optimization — Transformations

• Local common subexpression elimination.

• Local copy propagation.

• Local dead-code elimination.
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• Algebraic optimization.

• Jump-to-jump removal.

• Reduction in strength.

11 Peephole Optimization

• Can be done at the machine code level or at the intermediate code level.

1. Examine a “window” of instructions.

2. Improve code in window.

3. Slide window.

4. Repeat until “optimal”.
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Local Optimization

13 Peephole optimization—Redundant Loads

• A naive code generator will generate the same address or variable several times.

A := A + 1; ⇒ set A, %l0

set A, %l1

ld [%l1], %l1

add %l1, 1, %l1

st %l1, [%l0]

⇓

set A, %l0

ld [%l0], %l1

add %l1, 1, %l1

st %l1, [%l0]

14 Peephole optimization—Jumps-to-jumps

• Complicated boolean expressions (with many and, or, nots) can easily produce lots of jumps to
jumps.

if a < b goto L1

...

L1: goto L2

...

L2: goto L3

⇒ if a < b goto L3

...

L1: goto L3

...

L2: goto L3
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15 Algebraic Simplification

• Beware of numerical problems:

(x ∗ 0.00000001) ∗ 10000000000.0

may produce a different result than
(x ∗ 1000.0)

!

• FORTRAN requires that parenthesis be honored: (5.0∗x)∗ (6.0∗y) can’t be evaluated as (30.0∗x∗y).

• Note that multiplication is often faster than division.

16 Algebraic Simplification. . .

x := x + 0; ⇒

x := x - 0; ⇒

x := x ∗ 1; ⇒

x := 1 ∗ 1; ⇒ x := 1

x := x / 1; ⇒

x := x ** 2; ⇒ x := x * x;

f := f / 2.0; ⇒ f := f ∗ 0.5;

17 Reduction in Strength

• SHL(x,y) = shift x left y steps.

• Multiplications (and divisions) by constants can be replaced by cheaper sequences of shifts and adds.

x := x ∗ 32 ⇒ x := SHL(x, 5);

x := x ∗ 100

⇓

x := x ∗ (64 + 32 + 4)

⇓

x := x ∗ 64 + x ∗32 + x ∗4

⇓

x := SHL(x,6) + SHL(x,5) + SHL(x,2)

18 Local, Global,Inter-Procedural

Original Code

FUNCTION P (X,n): INT;

IF n = 3 THEN RETURN X[1]

ELSE RETURN X[n];

CONST R = 1;

BEGIN

K := 3; ...

IF P(X,K) = X[1] THEN

X[1] := R * (X[1] ** 2)
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FUNCTION P (X,n): INT;

IF n=3 THEN RETURN X[1] ELSE RETURN X[n];

CONST R = 1;

BEGIN

K := 3; ...

IF P(X,K) = X[1] THEN X[1] := R * (X[1] ** 2)

After Local Optimization

FUNCTION P (X,n): INT;

IF n=3 THEN RETURN X[1] ELSE RETURN X[n]

BEGIN

K := 3; ...

IF P(X,K) = X[1] THEN X[1] := X[1] * X[1]

20

FUNCTION P (X,n): INT;

IF n=3 THEN RETURN X[1] ELSE RETURN X[n]

BEGIN

K := 3;

...

IF P(X,K) = X[1] THEN X[1] := X[1] * X[1]

After Global Optimization

FUNCTION P (X,n): INT;

IF n=3 THEN RETURN X[1] ELSE RETURN X[n]

BEGIN

...

IF P(X,3) = X[1] THEN X[1] := X[1] * X[1]

21

FUNCTION P (X,n): INT;

IF n=3 THEN RETURN X[1] ELSE RETURN X[n]

BEGIN

IF P(X,3) = X[1] THEN X[1] := X[1] * X[1]

After Inter-Procedural Opt

BEGIN

IF TRUE THEN X[1] := X[1] * X[1]

After Another Local Opt

BEGIN

X[1] := X[1] * X[1]

• Delete P if it isn’t used elsewhere. This can maybe be deduced by an inter-procedural analysis.
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Global Optimization

23 Global Optimization

• Makes use of control-flow and data-flow analysis.

• Dead code elimination.

• Common subexpression elimination (local and global).

• Loop unrolling.

• Code hoisting.

• Induction variables.

• Reduction in strenght.

• Copy propagation.

• Live variable analysis.

• Uninitialized Variable Analysis.

24 Control Flow Graphs

Perform optimizations over the control flow graph of a procedure.

if ... goto B2

B2

if ... goto B3

B3

B5

goto B2

if ... goto B6

B4

B1
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25
Common Sub−Expression

Elimination

B5

t9 := 4 * j

x := A[t9] x := A[t3]

B2

B3

B4

t3 := 4 * j

t5 := j * 4

A[t5] := 20

t3 := 4 * j

A[t3] := 20

No changes to j here!

B1

26

Copy Propagation
x := t3

A[t4] := t3

A[t4] := t3

B5

B3

B4

x := t3

A[t4] := x

A[x] := 20 A[t3] := 20

No more uses of x!

No changes to x!

• Many optimizations produce X := Y .

• After an assignment X := Y , replace references to X by Y . Remove the assignment if possible.

27

Dead Code
Elimination

B5

B2

B3

B4

if x>20 goto B4

t1 := 4 * j

A[t3] := 20

No changes to x here!

Nor here!

x := 23 B1

• A piece of code is dead if we can determine at compile time that it will never be executed.
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Variables
Induction

j := j + 1;
t4 := A[4*j]

x := 23;
REPEAT

UNTIL ....;

B2

B3

j := j + 1

t4 := A[t1]

t1 := 4 * j

B4

if ... goto B3 if ... goto B3

j := j + 1

t1 := t1 + 4

t4 := A[t1]

t1 := 4 * j

x := 23 B1

• If i and j are updated simultaneously in a loop, and j = i ∗ c1 + c2 (c1, c2 are consants) we can remove
one of them, and/or replace ∗ by +.

29
Code

Hoisting

X:=A[i+3]+9

B2

X:=A[i+3]*6

B3

X:=t1+9 X:=t1*6

if a<5 goto B2

t1 := A[i+3];

B2

B1

B3

if a<5 goto B2

B1

IF a < 5 THEN X := A[i+3] + 9;

ELSE X := A[i+3] * 6 END

• Move code that is computed twice in different basic blocks to a common ancestor block.

30

Loop Unrolling

31 Loop Unrolling – Constant Bounds

FOR i := 1 TO 5 DO

A[i]:=i

END

⇓

A[1] := 1; A[2] := 2; A[3] := 3;

A[4] := 4; A[5] := 5;

• Loop unrolling increases code size. How does this effect caching?

32 Loop Unrolling – Variable Bounds

FOR i := 1 TO n DO

A[i] := i
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END

⇓

i := 1;

WHILE i <= (n-4) DO

A[i]:=i; A[i+1]:=i+1; A[i+2]:=i+2;

A[i+3]:=i+3; A[i+4]:=i+4; i:=i+5;

END;

WHILE i<=n DO

A[i]:=i; i:=i+1;

END

33

Inter-procedural Optimizations

34 Inter-procedural Optimization

• Consider the entire program during optimization.

• How can this be done for languages that support separately compiled modules?

Transformations

Inline expansion: Replace a procedure call with the code of the called procedure.

Procedure Cloning: Create multiple specialized copies of a single procedure.

Inter-procedural constant propagation: If we know that a particular procedure is always called with
a constant parameter with a specific value, we can optimize for this case.

35 Inline Expansion—Original Code

FUNCTION Power (n, exp:INT):INT;

IF exp < 0 THEN result := 0;

ELSIF exp = 0 THEN result := 1;

ELSE result := n;

FOR i := 2 TO exp DO

result := result * n;

END; END;

RETURN result;

END Power;

BEGIN X := 7; PRINT Power(X,2) END;

36 Inline Expansion—Expanded Code

BEGIN

X := 7;

result := X;

FOR i := 2 TO 2 DO
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result := result * X;

END;

PRINT result;

END

37 Inline Expansion—After copy propagation

BEGIN

X := 7;

result := 7;

FOR i := 2 TO 2 DO

result := result * 7;

END;

PRINT result;

END

38 Inline Expansion—More optimization

After loop unrolling

BEGIN

X := 7;

result := 7;

result := result * 7;

PRINT result;

END

After constant folding

BEGIN

result := 49;

PRINT result;

END

39 Procedure Cloning—Original Code

FUNCTION Power (n, exp:INT):INT;

IF exp < 0 THEN result := 0;

ELSIF exp = 0 THEN result := 1;

ELSE result := n;

FOR i := 2 TO exp DO

result := result * n;

END;

RETURN result;

END Power;

BEGIN PRINT Power(X,2), Power(X,7) END;
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40 Procedure Cloning—Cloned Routines

FUNCTION Power0 (n):INT; RETURN 1;

FUNCTION Power2 (n):INT; RETURN n * n;

FUNCTION Power3 (n):INT; RETURN n * n * n;

FUNCTION Power (n, exp:INT):INT;

(* As before *)

END Power;

Transformed Code:

BEGIN PRINT Power2(X), Power(X,7) END;

41

Machine Dependent vs. Machine Independent
Optimization

42 Machine (In-)Dependent Optimization?

• Optimizations such as inline expansion and loop unrolling seem pretty machine independent. You
don’t need to know anything special about the machine architecture to implement these optimizations,
in fact, both inline expansion and loop unrolling can be applied at the source code level. (May or may
not be true for inline expansion, depending on the language).

• However, since both inline expansion and loop unrolling normally increase the code size of the program,
these optimizations do, in fact, interact with the hardware.

43 Machine (In-)Dependent Optimization?

• A loop that previously might have fit in the instruction cache of the machine, may overflow the cache
once it has been unrolled, and therefore increase the cache miss rate so that the unrolled loop runs
slower than the original one.

• The unrolled loop may even be spread out over more than one virtual memory page and hence affect
the paging system adversely.

• The same argument holds for inline expansion.

44

Example

45

Loop Invariants
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46 Example – Original code

FOR I:= 1 TO 100 DO

FOR J := 1 TO 100 DO

FOR K := 1 TO 100 DO

A[I][J][K] := (I*J)*K;

END;

END;

END

47 Example/a – Find Loop Invariants

FOR I:= 1 TO 100 DO

FOR J := 1 TO 100 DO

FOR K := 1 TO 100 DO

A[I][J][K] := (I*J)*K;

END;

END;

END

FOR I:= 1 TO 100 DO

T3 := ADR(A[I]);

FOR J := 1 TO 100 DO

T1 := ADR(T3[J]);

T2 := I * J;

FOR K := 1 TO 100 DO

T1[K] := T2 * K

END;

END;

END

48

Strength Reduction

49 Example/b – Strength Reduction

FOR I:= 1 TO 100 DO

T3 := ADR(A[I]);

FOR J := 1 TO 100 DO

T1 := ADR(T3[J]);

T2 := I * J;

FOR K := 1 TO 100 DO

T1[K]:=T2*K END;

END;

END

FOR I:= 1 TO 100 DO

T3 := ADR(A[I]); T4 := I;

FOR J := 1 TO 100 DO

T1 := ADR(T3[J]);

T2 := T4; (* T4=I*J *)

T5 := T2; (* Init T2*K *)

FOR K := 1 TO 100 DO

T1[K] := T5;

T5 := T5 + T2;

END;

T4 := T4 + I;

END; END

• T4 holds I*J: I, I + I, I + I + I, · · · I ∗ J . T5 holds T2*K = I*J*K.

50

Copy Propagation
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51 Example/c – Copy Propagation

FOR I:= 1 TO 100 DO

T3 := ADR(A[I]);

T4 := I;

FOR J := 1 TO 100 DO

T1 := ADR(T3[J]);

T2 := T4;

T5 := T2;

FOR K := 1 TO 100 DO

T1[K] := T5;

T5 := T5 + T2;

END;

T4 := T4 + I;

END;

END

FOR I:= 1 TO 100 DO

T3 := ADR(A[I]);

T4 := I;

FOR J := 1 TO 100 DO

T1 := ADR(T3[J]);

T5 := T4;

FOR K := 1 TO 100 DO

T1[K] := T5;

T5 := T5 + T4;

END;

T4 := T4 + I;

END;

END

We replace T2 by T4.

52

Strength Reduction. . .

53 Example/d – Expand Array Indexing

• Expand subscripting operations. Pascal array indexing turns into C-like address manipulation!

VAR A:ARRAY[1..100,1..100,1..100] OF INT;

FOR I:= 1 TO 100 DO

T3 := ADR(A) + (10000*I)-10000;

T4 := I;

FOR J := 1 TO 100 DO

T1 := T3 +(100*J)-100;

T5 := T4;

FOR K := 1 TO 100 DO

(T1+K-1)↑ := T5; T5 := T5 + T4;

END;

T4 := T4 + I;

END; END

54 Example/e – Strength Red. + Copy Prop.

T6 := ADR(A);

FOR I:= 1 TO 100 DO

T4 := I;

T7 := T6;

FOR J := 1 TO 100 DO

T5 := T4;

T8 := T7;

FOR K := 1 TO 100 DO

T8↑ := T5; T5 := T5 + T4; T8 := T8 + 1;

END;
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T4 := T4 + I;

T7 := T7 + I00;

END;

T6 := T6 + 10000;

END

55

Loop Unrolling

56 Example/f – Loop Unrolling

T6 := ADR(A);

FOR I:= 1 TO 100 DO

T4 := I; T7 := T6;

FOR J := 1 TO 100 DO

T5 := T4; T8 := T7;

FOR K := 1 TO 10 DO

T8↑:=T5; T5+=T4; T8++; T8↑:=T5; T5+=T4; T8++;

T8↑:=T5; T5+=T4; T8++; T8↑:=T5; T5+=T4; T8++;

T8↑:=T5; T5+=T4; T8++; T8↑:=T5; T5+=T4; T8++;

T8↑:=T5; T5+=T4; T8++; T8↑:=T5; T5+=T4; T8++;

T8↑:=T5; T5+=T4; T8++; T8↑:=T5; T5+=T4; T8++;

END;

T4:=T4 + I; T7:=T7 + I00;

END; T6:=T6 + 10000;

END

57

Example. . .

58 Example – Inline Expansion

• ftp://cs.washington.edu/pub/pardo. The code has been simplified substantially...

• bitblt copies image region regions while performing an operation on the moved part.

• s is the source, d the destination, i the index in the x direction, j the index in the y direction.

59 Example – Inline Expansion. . .

• Every time around the loop we have to execute a switch (case) statement, which is very inefficient.

• Here we’ll show how bitblt can be optimized by inlining. It’s also amenable to run-time (dynamic)
code generation. I.e. we include the code generator in the executable and generate code for bitblt

when we know what its arguments are.
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60

#define BB_S (0xc)

bitblt (mask_t m, word s, word d, int op){

for (j=0; j<dy;++j) {

for (i=nw+1; i>0; --i) {

switch (op) {

case (0) : *d &= ~mask; break;

case (BB_D&~BB_S) : *d ^= ((s &*d) & mask);

break;

case (~BB_S) : *d ^= ((~s ^ *d) & mask);

break;

/* Another 12 cases... */

case (BB_X) : *d |= mask; break;

}; d++;

}; d++; s++;

}

}

main() {bitblt(mask,src,dest,...,BB_S);}

61 Example — Expanded Code

main () {

d = src; s=dst;

for (j=0; j<dy;++j) {

for (i=nw+1; i>0; --i) {

switch (BB_S) {

case (0) : *d &= ~mask; break;

case (BB_D&~BB_S) : *d ^= ((s &*d) & mask);

break;

case (~BB_S) : *d ^= ((~s ^ *d) & mask);

break;

/* Another 12 cases... */

case (BB_X) : *d |= mask; break;

}; d++;

}; d++; s++;

}

}

62 Example – Dead Code Elimination

main () {

d = src; s=dst;

for (j=0; j<dy;++j) {

for (i=nw+1; i>0; --i) {

d ^= ((s ^ *d) & mask);

d++;

};

d++; s++;

}

}
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63 Proebsting’s Law

Compiler Advances Double Computing Power Every 18 Years

I claim the following simple experiment supports this depressing claim. Run your favorite set of bench-
marks with your favorite state-of-the-art optimizing compiler. Run the benchmarks both with and without
optimizations enabled. The ratio of of those numbers represents the entirety of the contribution of compiler
optimizations to speeding up those benchmarks. Let’s assume that this ratio is about 4X for typical real-world
applications, and let’s further assume that compiler optimization work has been going on for about 36 years.
These assumptions lead to the conclusion that compiler optimization advances double computing power every
18 years. QED.

64 Proebsting’s Law. . .

This means that while hardware computing horsepower increases at roughly 60%/year, compiler optimizations
contribute only 4%. Basically, compiler optimization work makes only marginal contributions.

Perhaps this means Programming Language Research should be concentrating on something other than
optimizations. Perhaps programmer productivity is a more fruitful arena. http://research.microsoft.

com/~toddpro/papers/law.htm

65

Summary

66 Readings and References

• Read Louden: 468–484.

• Or, read the Dragon book: 530–532, 585–602.

• Debugging optimized code: See the Dragon book. pp. 703–711.

• Also see this support for Proebsting’s Law: On Proebsting’s Law, http://www.cs.virginia.edu/

~jks6b/on_proebstings_law.pdf by Kevin Scott.

67 Summary

• Difficult problems:

– Which transformations are actually profitable?

– How do we avoid unsafe optimizations?

– What part of the code should we optimize?

– How do we take machine dependencies (cache size) into account?

– At which level(s) do we optimize (source, interm. code, machine code)?

– How do we order the different optimizations?
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