
CSc 453 — Compilers and Systems Software

9 : Semantic Analysis I

Christian Collberg

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2009 Christian Collberg

September 27, 2009

1

Introduction

2 Compiler Phases

We are here!

AST

asm

Semantic
Analyser

Interm.
Code Gen

IR

Machine
Code Gen

IR AST

Lexer

tokens

source

errors

errors

Parser

errors

Optimize

3 Semantic Analysis

• The parser returns an abstract syntax tree (AST), a structured representation of the input program.
All information present in the input program (except maybe for comments) is also present in the AST.

• Literals (integer/real/. . . constants) and identifiers are available as AST input attributes.

• During semantic analysis we add new attributes to the AST, and traverse the tree to evaluate these
attributes and emit error messages.

• At compiler construction time we have to decide which attributes are needed, how they should be
evaluated, and the order in which they should be evaluated.

1



4 Why Semantic Analysis?

1. Is the program statically correct? If not, report errors to user:

• “undeclared variable”

• “illegal procedure parameter”

• “type incompatibility”

2. Make preparations for later compiler phases (code generation and optimization):

• Compute types of variables.

• Compute addresses of variables.

• Store transfer modes of procedure parameters.

• Compute labels for control structures (maybe).

5 Typical Semantic Errors

....

begin

end;
y := "x"

x,y : integer);
var z,x : char;

var k : P;
var z : R;

type R = array [9..7] of char;

end Y. "wrong closing identifier"

procedure P (
"multiple declaration"

"type mismatch"

"type name expected"

"identifier not declared"

program X;

var x,y,t : integer;

begin
"empty range"

6

....

3+2 : t := 9 |
1+4 : t := 8

case x of

end

"too few parameters"begin

y : t := 5 |

P(1,2,3);

P("x",2);

R[5] := "x";

z["x"] := 5;

"repeated case labels"

"boolean expression expected"

if x then t := 4;

end Y.

"too many parameters"

"integer type expected"

"variable expected"

"type mismatch"

"constant expected"

program X;

P(1);

7 Static Semantic Rules

Static Semantics: ≈ type checking rules. The rules that are checked by the compiler before execution.

2



Dynamic Semantics: Rules that can only be checked when the program is run. Example: ”pointer reference

to NIL”.

Context Conditions: Static semantic rules.

• Obviously, different languages have different static semantic rules. Ada, for example, allows null ranges

(e.g. array [9..7] of char ), while Modula-2 doesn’t.

• It’s our job as compiler writers to read the language definition and encode the rules in our semantic
analyzer.

8 Kinds of Context Conditions

Type Checks We must check that every operator used in the program takes arguments of the correct type.

Kind Checks We must check that the right kind of identifier (procedure, variable, type, label, constant,
exception) is used in the right place.

Flow-of-control Checks In Modula-2 an EXIT- statement must only occur within a LOOP-statement:

LOOP IF · · · THEN EXIT ENDIF; END

Uniqueness Checks Sometimes a name must be defined exactly once. Example: variable declarations,
case labels.

Name Checks Sometimes a name must occur more than once, e.g. at the beginning and end of a procedure.

9 Tree-Walk Evaluators

Static Semantic Rules are Confusing!

• Check out any C++ manual...

• Ada’s semantic rules are so unwieldy that compiler error messages often contain references to the

relevant sub-sub-section of the Ada Reference Manual (ARM): ”Type error. See ARM section 13.2.4.”

• We must organize the semantic analysis phase in a systematic way.

10 Tree-Walk Evaluators. . .

• The syntax analyzer produces an Abstract Syntax Tree (AST), a structured representation of the
input program.

• Each node in the tree has a number of variables called attributes.

• We write a program that traverses the tree (one or more times) and assigns values to the attributes.

3



11 Tree-Walk Evaluators. . .

Attributes

• Some attributes are given values by the parser. They are called input attributes.

• The attributes can store whatever we like, e.g. the types of expressions.

Context Conditions

• The context conditions are encoded as tests on the values of attributes (node.type is the type attribute
of node, node.pos the line number in the source code):

if node.type 6= "integer" then

print "Integer expected at " node.pos

12 Tree-Walk Evaluation

ASSIGN

IF a<10 THEN

ENDIF;

c := 1;

EXPR THEN ELSE

IF

The AST after
parsing

Semantic
Analysis

Parsing

Source program

Input
Attributes

LOP ROP

BinaryOp:<

Des Expr

Val: 1Id: "c"Val: 10Id: "a"

INTEGERIDENTINTEGERIDENT

13 Tree-Walk Evaluation. . .

real

THEN ELSE

IF

LOP ROP

Type:BinaryOp:<

bool

IDENT

Id: "a"

Type: int Type:

INTEGER

Val: 10

int Type:

INTEGER

Val: 1

int

Des Expr

ASSIGN Type:

The AST after
semantic analysis

Possible 
type error?!

Tree
Traversal
Order

Semantic
Analysis

char

IDENT

Id: "c"

Type:

EXPR

14

Tree Traversal

15 Tree Traversal

• A tree-walker is a number of procedures that take a node as argument. They start by processing the
root of the tree and then work their way down, recursively.

4



• Often we will have one procedure for each major node-kind, i.e one for declarations, one for statements,
one for expressions. Notation:

n.Kind is n’s node type, for example IfStat, Assignment, etc.;

n.C is n’s child C, for example n.expr, n.left, etc.;

n.A is n’s attribute A, for example n.type, n.value, etc.

16 Tree Traversal. . .

• Each time we visit a node n we can

1. Evaluate some of n’s attributes.

2. Print a semantic error message.

3. Visit some of n’s children.

PROCEDURE Stat(n : Node);

IF n.Kind = Assign THEN

Expr(n.Des); Expr(n.Expr);

ELSIF n.Kind = IfElse THEN

Expr(n.Expr); Stat(n.Stat1); Stat(n.Stat2);

ENDIF

END Stat;

17 Tree Traversal. . .

PROCEDURE Expr(n : Node);

IF n.Kind = BinOp THEN

Expr(n.LOP);

Expr(n.ROP);

ELSIF n.Kind=Name THEN

(* Process n.Name *)

ELSIF n.Kind=IntCont THEN

(* Process n.Value *)

ENDIF

END Expr;

18

Constant Expression Evaluation

19 Constant Expressions

• In many languages there are special constructs where only constant expressions may occur.

• For example, in Modula-2 you can write

CONST C = 15;

TYPE A = ARRAY [5..C*6] OF CHAR;

5



but not

VAR C : INTEGER;

TYPE A = ARRAY [5..C] OF CHAR;

i.e. the upper bound of an array index must be constant (value known at compile time).

20 Constant Expressions. . .

• Constant declarations can depend on other constant declarations:

CONST C1 = 15;

CONST C2 = C1 * 6;

TYPE A = ARRAY [5..C2] OF CHAR;

• Write a tree-walk evaluator that evaluates constant integer expressions.

• IntConst has an input attribute Value. We mark input attributes with a ⇐ in the abstract syntax.

• Each node is given an attribute Val.

• Val moves up the tree, so we mark it with a ⇑ in the abstract syntax.

21 Constant Expressions. . .

Concrete Syntax:

Expr ::= Add | Mul | IntConst

Add ::= Expr + Expr

Mul ::= Expr * Expr

IntConst ::= number

Abstract Syntax:

Expr ::= Add | Mul | IntConst

Add ::= LOP:Expr ROP:Expr ⇑Val:INTEGER

Mul ::= LOP:Expr ROP:Expr ⇑Val:INTEGER

IntConst ::= ⇐Value:INTEGER ⇑Val:INTEGER

22

PROCEDURE Expr (n: Node);

IF n.Kind = Add THEN

Expr(n.LOP); Expr(n.ROP);

n.Val := n.LOP.Val + n.ROP.Val;

ELSIF n.Kind = Mul THEN

Expr(n.LOP); Expr(n.ROP);

n.Val := n.LOP.Val * n.ROP.Val;

ELSIF n.Kind = IntConst THEN

n.Val := n.Value;

ENDIF

END;

6



• n.LOP.Val has been evaluated after Expr(n.LOP) has returned.

• n.LOP.Val is the value of of n’s left child’s Val attribute.

23 Constant Expressions. . .

IntConst

The AST
after
parsing

The AST
after the
tree−walk

Value=5

IntConst

Value=7

IntConst

Value=9

Val=3

IntConst

Value=7

Val=7

IntConst

Value=5

Val=5

IntConst

Val=12

Val=36

Add

Mul

Val=

Mul

Add
Value=9

24 Constant Declarations

• Let’s extend this exercise to handle Modula-2 style constant declarations:

CONST C1 = 15;

CONST C2 = C1 * 6;

TYPE A = ARRAY [5..C2] OF CHAR;

• We assume there is a magic function Lookup(ID) that returns TRUE if ID is a constant identifier, and
a function GetValue(ID) which returns the value of this constant.

25

Concrete Syntax:

ConstDecl ::= CONST Ident = Expr

Expr ::= Expr + Expr | Ident | IntConst

IntConst ::= number

Ident ::= name

Abstract Syntax:

ConstDecl ::= ID:Ident EXPR:Expr

Expr ::= Add | IntConst | Ident

Add ::= LOP:Expr ROP:Expr ⇑Val:INTEGER ⇑IsConst:BOOLEAN

IntConst ::= ⇐Value:INTEGER ⇑Val:INTEGER ⇑IsConst:BOOLEAN

Ident ::= ⇐ID:String ⇑IsConst:BOOLEAN

26

PROCEDURE ConstDecl (n: Node);

Expr(n.EXPR);

IF NOT n.EXPR.IsConst THEN

PRINT "Constant expression expected."

7



PROCEDURE Expr (n: Node);

IF n.Kind = Add THEN

Expr(n.LOP); Expr(n.ROP);

n.Val := n.LOP.Val + n.ROP.Val;

n.IsConst := n.LOP.IsConst AND n.ROP.IsConst;

ELSIF n.Kind = IntConst THEN

n.Val := n.Value; n.IsConst := TRUE;

ELSIF n.Kind = Ident THEN

n.IsConst := Lookup(n.ID); n.Val := GetValue(n.ID);

ENDIF

27 Constant Declarations. . .

VAR x:INTEGER;

ID="C"

Source

ID="C"

IsConst=TRUE IsConst=FALSE

CONST C = 45+X;

Value=45 ID="X"

Ident

ConstDecl

Expr

Add

ConstDecl

Expr

IsConst=FALSE

Add

Val=?

IntConst

Value=45

Val=45

Ident

ID="X"

Val=?

IntConst

28

Typechecking

29 Type Checking Assignments

• Write a tree-walker that type checks assignments in Pascal:

var i : integer; var r : real; var c : char;

begin

i := 34;

i := i + 2;

r := 3.4;

r := 3.4 + i; (* OK, automatic conversion. *)

i := r; (* Illegal. *)

i := c; (* Illegal. *)

end.

• Assume a function lookup that returns the type of an identifier.

30

Concrete Syntax:

8



Assign ::= Expr := Expr

Expr ::= Expr + Expr | name | integer | real | char

Abstract Syntax:

Assign ::= Left:Expr Right:Expr

Expr ::= Add | Name | IntConst | RealConst | CharConst

Add ::= LOP:Expr ROP:Expr ⇑Type:String

Name ::= ⇐Name:String ⇑Type:String

IntConst ::= ⇐Value:INTEGER ⇑Type:String

RealConst ::= ⇐Value:REAL ⇑Type:String

CharConst ::= ⇐Value:CHAR ⇑Type:String

31

PROCEDURE Assign (n: Node);

Expr(n.Left); Expr(n.Right);

IF NOT(n.Left.Type = n.Right.Type OR

(n.Left.Type="REAL" AND n.Right.Type="INT"))

THEN PRINT n.Left.Pos ":Type mismatch" ENDIF

PROCEDURE Expr (n: Node);

IF n.Kind = Add THEN BinArith(n);

ELSIF n.Kind = Name THEN n.Type := lookup(n.Name);

ELSIF n.Kind = IntConst THEN n.Type := "INT";

ELSIF n.Kind = CharConst THEN n.Type := "CHAR";

ELSIF n.Kind = RealConst THEN n.Type := "REAL";

ENDIF

32

PROCEDURE BinArith (n: Node);

Expr(n.LOP); Expr(n.ROP);

IF n.LOP.Type = "INT" AND n.ROP.Type = "INT" THEN

n.Type := "INT"

ELSIF (n.LOP.Type = "INT" OR n.LOP.Type = "REAL") AND

(n.ROP.Type = "INT" OR n.ROP.Type = "REAL") THEN

n.Type := "REAL"

ELSIF n.LOP.Type = "ERROR" OR n.ROP.Type = "ERROR" THEN

n.Type := "ERROR"

ELSE

PRINT n.Pos ":Illegal operation";

n.Type := "ERROR"

ENDIF

9



33

Y:=X+6.5+(2+7)+9.3

Add

LOP ROP

type=real

Add

LOP ROP

type=real

Assign

Left Right

Add

LOP ROP

type=int

val=7

type=int

IntConst

val=2

type=int

IntConst

RealConst

val=9.3

type=realId="X"

Name

type=int

RealConst

val=6.5

type=real

Add

LOP ROP

type=real

Id="Y"

Name

type=real

34

Y:=X+6.5+("C"+7)+9.3

Add

LOP ROP

type=error

Assign

Left Right

Id="Y"

Name

type=int

Add

LOP ROP

type=error

Add

LOP ROP

type=real

RealConst

val=6.5

type=real

RealConst

val=9.3

type=real

val=7

type=int

IntConst

type=char

CharConst

val="C"

Id="X"

Name

type=int

Add

LOP ROP

type=error

35 Type Checking Assignments. . .

• n.LOP.Type & n.ROP.Type are available once we’ve returned from Expr(n.LOP);Expr(n.ROP).

• We use the special type value "ERROR" to avoid printing an error message more than once for each
expression.

• Note the difference between type equivalence and assignability:

1. Type equivalence is used e.g. with binary operators such as + and <. In Pascal, integer & real

are equivalent.

2. In Pascal, an integer can be assigned to a real, but not vice versa.

• In Modula-2, integers and reals are neither type equivalent nor assignable.

10



36

Synthesized Attributes

37 Synthesized Attributes

• Synthesized attributes move values up the tree (from the leaves towards the root). The value of a
synthesized attribute A at a node n is determined from the values of n’s children:

n.A := f(n.Ch1.A1, n.Ch2.A2)

z

Attributes

Input

Attributes

a

B

A

C

D E

x b

y

Synthesized

PROCEDURE ConstExpr (

n:Node);

ConstExpr(n.LOP);

ConstExpr(n.ROP);

n.Val :=

n.LOP.Val+

n.ROP.Val;

38

LOOP - EXIT

39 LOOP–EXIT

• In Modula-2, the EXIT statement can only occur within a LOOP statement:

BEGIN

LOOP

IF ...THEN

WHILE ...DO

EXIT; ⇐ OK!

END

END

END

EXIT ⇐ Illegal!

END

40

Stat ::= If | Loop | Exit

If ::= expr:Expr body:Stat ⇓InLoop:BOOLEAN

Loop ::= body:Stat ⇓InLoop:BOOLEAN

Exit ::= ⇓InLoop:BOOLEAN

11



PROCEDURE Stat (N:Node)

IF n.Kind = If THEN

Expr(n.expr); n.body.InLoop:=n.InLoop;Stat(n.body);

ELSIF n.Kind = Loop THEN

n.body.InLoop := TRUE; Stat(n.body);

ELSIF n.Kind = Exit THEN

IF NOT n.InLoop THEN

PRINT "ERROR: EXIT not in LOOP"; ENDIF

ENDIF

41 Environments

• In the previous type checking example we assumed there was a function lookup that would find the
type of an identifier.

• The problem is that there may be several uses of the same name in a program, and each may have a
different type:

char x = ’c’;

int main() {

int x = 10; {

float x = 10.0;

printf("%f", x); // Which x?

}

}

• We’ll be using environment attributes to disambiguate identifier references.

42 Environments. . .

• Write a tree-walk evaluator that type checks Pascal assignment statements.

• Let declared variables be stored in an environment attribute, a set of tuples of type EnvT=Name 7→ Type.

• Let there be a function lookup(E,V) that returns the type of an variable V in an environment E.

43 Environments. . .

Assign ::= Des:Expr Expr:Expr ⇓Env:EnvT

Expr ::= Add | Name | IntConst | RealConst

Add ::= LOP:ConstExpr ROP:ConstExpr ⇑Type:String ⇓Env:EnvT

Name ::= ⇐Id:String ⇑Type:String ⇓Env:EnvT

IntConst ::= ⇐Value:INTEGER ⇑Type:String ⇓Env:EnvT

RealConst ::= ⇐Value:REAL ⇑Type:String ⇓Env:EnvT

44 Environments. . .

PROCEDURE Assign (n: Node);

n.Des.Env := n.Env;

n.Expr.Env := n.Env;

12



Expr(n.Des); Expr(n.Expr);

IF n.Des.Type 6= n.Expr.Type THEN

PRINT n.Expr.Pos ":Type mismatch"

ENDIF

END;

45 Environments. . .

PROCEDURE Expr (n: Node);

IF n.Kind = Add THEN BinArith(n);

ELSIF n.Kind = Name THEN

IF member(n.Env, n.Id) THEN

n.Type := lookup(n.Env, n.Id);

ELSE

PRINT "Ident not declared"

n.Type := "ERROR"

ENDIF;

ELSIF n.Kind = IntConst THEN

n.Type := "INT";

ELSIF n.Kind = RealConst THEN

n.Type := "REAL";

ENDIF

46

PROCEDURE BinArith (n: Node);

n.LOP.Env := n.Env;

Expr(n.LOP);

n.ROP.Env := n.Env;

Expr(n.ROP);

IF n.LOP.Type = "INT" AND n.ROP.Type = "INT" THEN

n.Type := "INT"

ELSIF (n.LOP.Type = "INT" ORn.LOP.Type = "REAL") AND

(n.ROP.Type = "INT" OR n.ROP.Type = "REAL") THEN

n.Type := "REAL"

ELSE

PRINT n.Pos ":Illegal operation";

n.Type := "ERROR"

ENDIF

13



47

Add

LOP ROP

type=real

Assign

Left Right

RealConst

val=6.5

type=real

Id="Z"

Name

type=int

Add

LOP ROP

type=real

RealConst

val=9.3

type=realId="X"

Name

type=int

Id="Y"

Name

type=real

Add

LOP ROP

type=real

Y:=(X+6.5)+(Z+9.3)
Env={X 7→ INT, Y 7→ REAL, Z 7→ INT}

Env={X 7→ · · · }

Env={· · · } Env={· · · }

Env={X 7→ · · · }

Env={· · · }
Env={· · · }

Env={· · · }

Env={X 7→ · · · }

48

Inherited Attributes

49 Inherited Attributes

• Inherited attributes move values down the tree (from the root towards the leaves). They inform the
nodes of a subtree of the environment (context) in which they occur.

• The value of an inherited attribute A at a node n is determined from the attributes of n’s parent p:
n.A := f(p.A1, p.A2)

k

a

B

A

C

D E

x b

s

PROCEDURE BinArith (n: Node);

n.LOP.Env := n.Env;

Expr(n.LOP);

n.ROP.Env := n.Env;

Expr(n.ROP);

50

The History of Attribute Grammars

51 History of Attribute Grammars

• What you have seen so far of attribute evaluation was know to the programming language community
already in the early 1960’s. It was also clear at the time that synthesized attributes alone were not
enough to specify the semantics of the languages that were of concern at the time (Algol 60).

• Something more powerful was needed, and it was not clear to anyone exactly what that was.

14



• The person who finally came up with the answer was Donald Knuth (of Stanford University), one of
the best known researchers in computer science. The following excerpts are taken from a talk he gave
to a conference on attribute grammars.

52 In the Beginning... I

“Much of my story takes place in 1967, by which time a great many computer programs had been written all
over the world. [...] One of the puzzling questions under extensive investigation at the time was the problem of
programming language semantics: How should we define the meaning of statements in algorithmic languages?

[...] I was ACM Lecturer that year [...]. My first stop was Cornell, where I spent the first weekend staying
at Peter Wegner’s home in Ithaca, New York. I went with Peter to synagogue on Saturday, he went with
me to a church on Sunday. We hiked outside the city in a beautiful river valley that contained many frozen
water falls. But mostly we talked Computer Science.

53 In the Beginning... II

Peter asked me what I thought about formal semantics [...]. [...] my answer was that the best way I knew to
define semantics was to use attributes whose values could be defined on a parse tree from bottom to top. [...]
We also needed to include some complicated ad hoc methods, in order to get context-dependent information
into the tree.

So Peter asked, “Why can’t attributes be defined from the top down as well as from the bottom up?”
A shocking idea! Of course I instinctively replied that it was impossible to go both bottom up and

top-down. But after some discussion I realized that his suggestion wasn’t so preposterous after all, if circular
definitions could somehow be avoided.

54 In the Beginning... III

Although attribute grammars remained at the back of my mind for several months, my next chance to think
seriously about them didn’t come until I was away from home again — this time at a SIAM conference
in Santa Barbara, California, at the end of November. Although the conference lists me as one of the
participants, the truth is that I spent most of the whole time sitting on the beach outside the conference hotel
writing a paper about “semantics of context free languages” (Mathematical Systems Theory, Vol 2 (1968),
pp.127–145). [...] I spent the first day working on a test for circularity; after rejecting three obviously false
starts, I thought I had found a correct algorithm, and didn’t try to too hard to find fault with it.

55 In the Beginning... IV

[1970] I spent three of four pleasant days sitting under an oak tree near Lake Langunita [Stanford], writing
“Examples of formal semantics” (Lecture Notes in Mathematics 188, (1971), pp. 95-96). It is clear from
reading [this paper] that I was still unaware of the serious error in the circularity test [...]. I returned the
galley proofs [...] to the printer on July 28; then on August 6, I received a letter from Stein Krogdahl in
Norway, containing an elegantly presented counterexample to my circularity algorithm. (His letter had come
by surface mail, taking six weeks to reach me, otherwise I could have alluded to the problem in [the paper].)

In 1977 I began to work on a language for computer typesetting called TEX, and you might ask why I
didn’t use an attribute grammar to define the semantics of TEX. Good question.”

The Genesis of Attribute Grammars, Donald E. Knuth, Stanford University. LNCS 461, Attribute
Grammars and their Applications.

15



56 Donald Knuth

From: http://www-cs-faculty.stanford.edu/~knuth/vita.html
Donald E. Knuth was born on January 10, 1938 in Milwaukee, Wisconsin. He studied mathematics as

an undergraduate at Case Institute of Technology, where he also wrote software at the Computing Center.
The Case faculty took the unprecendented step of awarding him a Master’s degree together with the B.S.
he received in 1960. After graduate studies at California Institute of Technology, he received a Ph.D. in
Mathematics in 1963 and then remained on the mathematics faculty. Throughout this period he continued
to be involved with software development, serving as consultant to Burroughs Corporation from 1960–1968
and as editor of Programming Languages for ACM publications from 1964–1967.

57 Donald Knuth. . .

He joined Stanford University as Professor of Computer Science in 1968, and was appointed to Stanford’s
first endowed chair in computer science nine years later. As a university professor he introduced a vari-
ety of new courses into the curriculum, notably Data Structures and Concrete Mathematics. In 1993 he
became Professor Emeritus of The Art of Computer Programming. He has supervised the dissertations of
28 students.

58 Donald Knuth. . .

Knuth began in 1962 to prepare textbooks about programming techniques, and this work evolved into a
projected seven-volume series entitled The Art of Computer Programming. Volumes 1–3 appeared in 1968,
1969, and 1973, and he is now working full time on the remaining volumes. Approximately one million copies
have already been printed, including translations into six languages. He took ten years off from this project
to work on digital typography, developing the TEX system for document preparation and the METAFONT

system for alphabet design. Noteworthy byproducts of those activities were the WEB and CWEB languages for
structured documentation, and the accompanying methodology of Literate Programming. TEX is now used
to produce most of the world’s scientific literature in physics and mathematics.

59 Donald Knuth. . .

His research papers have been instrumental in establishing several subareas of computer science and software
engineering: LR(k) parsing; attribute grammars; the Knuth–Bendix algorithm for axiomatic reasoning;
empirical studies of user programs and profiles; analysis of algorithms. In general, his works have been
directed towards the search for a proper balance between theory and practice.

60 Donald Knuth. . .

Professor Knuth received the ACM Turing Award in 1974 [. . . ]
Professor Knuth lives on the Stanford campus with his wife, Jill. They have two children, John and

Jennifer. Music is his main avocation.
Professor Knuth has an asteroid named after him:

http://neo.jpl.nasa.gov/cgi-bin/db?name=21656

http://sunkl.asu.cas.cz/~asteroid/planetky/21656/eng.htm

Professor Knuth’s home page: http://www-cs-faculty.stanford.edu/~knuth

16



61

Summary

62 Readings and References

• Read Louden:

Abstract Syntax: 109–114

Attribute grammars: 257–270

• or read the Dragon book:

Abstract Syntax: 49

Type Checking: 343–345

AST Construction: 287–290

Syntax-Directed Definitions: 280–283

Recursive Evaluators: 316–319

63 Summary

• We use the description of the abstract syntax as a description of the structure of abstract syntax trees.

• In other words, we use context free grammars for parsing, and to describe the data structure (the
AST) produced by the parser.

• There exist tools that take an abstract grammar as input and produce a AST-manipulation module
(with routines for construction, traversal, and input/output of trees) as output.

64 Summary. . .

• To perform semantic analysis we

1. Build an abstract syntax tree during parsing.

2. Decorate the AST with input attributes (literals and identifiers found in the source).

3. Add attributes needed during semantic analysis.

4. Traverse the tree (one or more times) to evaluate the attributes and emit error messages.

• Designators are the kinds of expressions that denote writable locations (i.e. L-values). They are
common on the left hand sides of assignment statements but also occur as actual reference parameters
in procedure calls.

65 Summary. . .

• The Concrete Syntax describes the physical layout of the language, the Abstract Syntax describes
the logical structure of the language.

• A language’s Static Semantics gives the rules that a “correct” program has to obey. Static semantic
rules are most often (but not always) enforced at compile-time. The Dynamic Semantics describes
the “meaning” of a program, how it will behave at run-time.

17



• Synthesized attributes get their values from their children only. They move up the tree. Inherited
attributes get their values from their parent only. They move down the tree.

66 Summary. . .

• The rôle of the parser (in a multi-pass analysis compiler) is to construct an abstract syntax tree.

• We can’t always determine a visit sequence (the order in which the AST nodes are visited) that will
evaluate all attributes in one pass. Then several traversals will be necessary.

• We always have to convince ourselves that we have devised a non-circular attribute evaluation scheme.
We cannot have two attributes A1 & A2 such that A1 must be evaluated before A2 and vice versa.

67 Confused Student Email

Should we know how to convert from concrete to abstract syntax for the exam. If so, can you indicate where
I might be able to find more information on how to do this.

Don’t really know what you’re asking. Converting from concrete to abstract syntax is what the parser
does. As it is parsing the input it builds the abstract syntax tree; with a bottom-up parser this is almost
trivial.

I have read some of the text book, but I didn’t find what I was looking for (I think I’m looking for some
sort of algorithm, or set of rules that I can use to make the conversion, like for removing left recursion, and
common left factors).

There is no need to do anything like that to the abstract grammar since it is not used for parsing.
The abstract grammar will often be ambiguous, left-recursive, etc, and that’s quite all right. The abstract
grammar just describes the structure of the AST nodes, that’s all.

68 Confused Student Email. . .

Don’t let the word ”abstract” in ”Abstract Syntax Tree” confuse you. There isn’t anything abstract about
it at all; in fact, it is about as concrete as you can get. The idea is that performing semantic analysis on or
generating code from an input program in source form (a text file) is much too hard. Therefore we build
an internal representation (a data structure) of the input program during parsing, and then work on this
structure. The structure happens to be a tree, because programs are naturally tree-shaped.

69

Homework

70 Homework I

• Give an abstract syntax specification of Pascal and Modula-2 for-loops.

Pascal’s concrete syntax:

ForStat ::= for ident := expr to expr do Stat

ForStat ::= for ident := expr downto expr do Stat

Modula-2’s concrete syntax:

18



ForStat ::= FOR ident := expr TO expr [ByPart] DO StatSeq END

ByPart ::= BY ConstExpr

• The optional BY-part is an integer constant expression which gives the amount to add to the iteration
variable each time we go around the loop. If omitted, the increment defaults to 1.

71 Homework II

• Give an abstract syntax for Modula-2’s CASE-statement, and construct the AST for the example
below.

CASE i OF
4 .. 7 : j := 77; |

2, 6 .. 12 : j := 99; |

ELSE j := 0;

END;

Concrete Syntax:

CaseStat ::= CASE Expr OF CaseList [ELSE StatSeq] END

CaseList ::= CaseLabelList : StatSeq | CaseList | ǫ

CaseLabelList ::= CaseLabel , CaseLabelList | CaseLabel

CaseLabel ::= ConstExpr [.. ConstExpr]

72 Homework III

• Write a Modula-2 type checker. M2 has two mutually assignable but inequivalent integer types:
INTEGER and CARDINAL (unsigned). Integer literals ≥ 0 are either INTEGERs or CARDINALs. Integers
and reals are neither assignable nor equivalent. TRUNC and FLOAT convert between the two.

Assign ::= Left:Expr Right:Expr

Expr ::= Add | Name | Trunc | Float | IntConst | RealConst

Add ::= LOP:Expr ROP:Expr

Trunc ::= LOP:Expr

Float ::= LOP:Expr

Name ::= ⇐Id:String

IntConst ::= ⇐Value:INTEGER

RealConst ::= ⇐Value:REAL

73 Homework IV

• Write a concrete grammar that describes the syntax we have been using to describe our abstract
grammars.

• The concrete grammar should describe

Rules LHS ::= RHS

Choice LHS ::= CH1 | CH2 | · · ·

Children LHS ::= Name:Child

19



Input Attributes LHS ::= ⇐Attr:Type

Synthesized Attributes LHS ::= ⇑Attr:Type

Inherited Attributes LHS ::= ⇓Attr:Type

20


