CSc 453

Compilers and Systems Software

15 : Intermediate Code III

Department of Computer Science University of Arizona

Basic Blocks and Flow Graphs

Control Flow Graphs

- We divide the intermediate code of each procedure into basic blocks. A basic block is a piece of straight line code, i.e. there are no jumps in or out of the middle of a block.
- The basic blocks within one procedure are organized as a (control) flow graph, or CFG. A flow-graph has
- basic blocks $B_{1} \cdots B_{n}$ as nodes,
- a directed edge $B_{1} \rightarrow B_{2}$ if control can flow from B_{1} to B_{2}.
- Special nodes ENTER and EXIT that are the source and sink of the graph.
- Inside each basic block can be any of the IRs we've seen: tuples, trees, DAGs, etc.

Control Flow Graphs. . .

Source Code:
X := 20; WHILE X < 10 DO
$\mathrm{X}:=\mathrm{X}-1$; $\mathrm{A}[\mathrm{X}]$:= 10 ;
IF $X=4$ THEN X := X - 2 ; ENDIF;
ENDDO; Y := X + 5;
Intermediate Code:
(1) $\mathrm{X}:=20$
(5) if $\mathrm{X}<>4$ goto (7)
(2) if $X>=10$ goto (8)
(6) $\mathrm{X}:=\mathrm{X}-2$
(3) $\mathrm{X}:=\mathrm{X}-1$
(7) goto (2)
(4) $\mathrm{A}[\mathrm{X}]:=10$
(8) $\mathrm{Y}:=\mathrm{X}+5$

Control Flow Graphs. . .

Flow Graph:

Constructing Basic Blocks

Constructing Basic Blocks

- Assume that the input is a list of tuples. How do we find the beginning and end of each basic block?
(1) First determine a set of leaders, the first tuple of basic blocks:
(1) The first tuple is a leader.
(2) Tuple L is a leader if there is a tuple if ...goto L or

```
goto L
```

(3) Tuple L is a leader if it immediately follows a tuple if ...goto B or goto B.
(2) A basic block consists of a leader and all the following tuples until the next leader.

Basic Blocks. . .

Basic Blocks. . .

B_{1} :	[(1) $P:=0$; (2) $\mathrm{I}:=1]$
B_{2} :	[(3) P: $=\mathrm{P}+\mathrm{I}$;
	(4) IF $\left.\mathrm{P}<=60 \mathrm{GOTO} B_{4}\right]$
B_{3} :	[(5) P:=0; (6) $\mathrm{I}:=5$]
B_{4} :	[(7) T1:=I*2; (8) $\mathrm{I}:=\mathrm{T} 1+1$;
	(9) IF $\left.\mathrm{I}<=20 \mathrm{GOTO} B_{2}\right]$
B_{5} :	[(10) K: $=\mathrm{P} * 3$]

Summary

Readings and References

- Read Louden:

Flow Graphs 475-477

- Or, read the Dragon book:

Basic Blocks 528-530
Flow Graphs 532-534

Summary

- A Control Flow Graph (CFG) is a graph whose nodes are basic blocks. There is an edge from basic block B_{1} to B_{2} if control can flow from B_{1} to B_{2}.
- Control flows in and out of a CFG through two special nodes ENTER and EXIT.
- We construct a CFG for each procedure. This representation is used during code generation and optimization.
- Java bytecode is a stack-based IR. It was never intended as an UNCOL, but people have still built compilers for Ada, Scheme and other languages that generate Java bytecode. It is painful.
- Microsoft's MSIL is the latest UNCOL attempt.

Homework

Homework I

Translate the program below into quadruples. Identify beginnings and ends of basic blocks. Build the control flow graph.

PROGRAM P;
VAR X : INTEGER; Y : REAL;
BEGIN
X := 1; Y := 5.5;

$$
\text { WHILE X < } 10 \text { DO }
$$

$$
\mathrm{Y}:=\mathrm{Y}+\mathrm{FLOAT}(\mathrm{X}) ;
$$

$$
\mathrm{X}:=\mathrm{X}+1 ;
$$

$$
\text { IF } Y>10 \text { THEN } Y:=Y * 2.2 \text {; ENDIF; }
$$

ENDDO;
END.

Exam Question

- Draw the control flow graph for the tuples.

```
int A[5],x,i,n;
for (i=1; i<=n; i++) {
    if (i<n) {
        x = A[i];
    } else {
        while (x>4) {
        x = x*2+A[i];
        };
    };
    x = x+5;
}
```

(1) i $:=1$
(2) IF i>n GOTO (14)
(3) $I F$ i>=n GOTO (6)
(4) $\mathrm{x}:=\mathrm{A}[\mathrm{i}]$
(5) GOTO (11)
(6) IF $\mathrm{x}<=4$ GOTO (11)
(7) $\mathrm{T} 1:=\mathrm{x} * 2$
(8) $\mathrm{T} 2:=\mathrm{A}[\mathrm{i}]$
(9) $\mathrm{x}:=\mathrm{T} 1+\mathrm{T} 2$
(10) GOTO (6)
(11) $x:=x+5$
(12) i := i+1
(13) GOTO (2)

