
CSc 453

Compilers and Systems Software

18 : Interpreters

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2009 Christian Collberg

collberg@gmail.com

AST

Semantic
Analyser

Interm.
Code Gen

IR AST

Lexer

tokens

source

VM

Parser

Compiler

Gen
VM Code

Interpreter

Get Next
Instruction

Execute
Instruction

An interpreter is like a CPU, only in software.

The compiler generates virtual machine (VM) code rather
than native machine code.

The interpreter executes VM instructions rather than native
machine code.

Interpreters are

slow Often 10–100 times slower than executing machine
code directly.

portable The virtual machine code is not tied to any particular
architecture.

Interpreters work well with

very high-level, dynamic languages
(APL,Prolog,ICON) where a lot is unknown at
compile-time (array bounds, etc).

Kinds of Interpreters

"APL/Prolog−style (load−and−go/interactive) interpreter"

Read, lex,

parse,

semantics

Source

Code

VM
Code

read
eval
print

Interpret

Read, lex,

parse,

semantics

Source

Code

VM
Code

CodeFile.vm

read
eval
print

Interpret

Read

VM
CodeFile.vm

"Java−style interpreter"

Kinds of Interpreters. . .

Just−In−Time (JIT,Dynamic) Compiler

Code

Read, lex,

parse,

semantics

Source

Code
CodeFile.vm

Compile
Code

Native
ExecuteCodeFile.vm

VM

Actions in an Interpreter

Internally, an interpreter consists of
1 The interpreter engine, which executes the VM instructions.
2 Memory for storing user data. Often separated as a heap and a

stack.
3 A stream of VM instructions.

Actions in an Interpreter. . .

I := Get next instruction.

Decode the instruction.

Op := the opcode
Arg1 := 1st argument
Arg2 := 2nd argument
....

Perform the function
of the opcode.

Instruct−

add
store

mul

ionstream

....

....

Heap

Stack

Memory

"Hello!"
Static
Data

Stack-Based Instruction Sets

Many virtual machine instruction sets (e.g. Java bytecode,
Forth) are stack based.

add pop the two top elements off the stack, add
them together, and push the result on the stack.

push X push the value of variable X .

pusha X push the address of variable X .

store pop a value V , and an address A off the stack.
Store V at memory address A.

Stack-Based Instruction Sets. . .

Here’s an example of a small program and the corresponding
stack code:

Source Code VM Code

VAR X,Y,Z : INTEGER;

BEGIN

X := Y + Z;

END;

pusha X

push Y

push Z

add

store

Register-Based Instruction Sets

Stack codes are compact. If we don’t worry about code size,
we can use any intermediate code (tuples, trees). Example:
RISC-like VM code with ∞ number of virtual registers R1, · · · :

add R1, R2, R3 Add VM registers R2 and R3 and store in VM
register R1.

load R1, X R1 := value of variable X .

loada R1, X R1 := address of variable X .

store R1, R2 Store value R2 at address R1.

Register-Based Instruction Sets. . .

Here’s an example of a small program and the corresponding
register code:

Source Code VM Code

VAR X,Y,Z : INTEGER;

BEGIN

X := Y + Z;

END;

load R1, Y

load R2, Z

add R3, R1, R2

loada R4, X

store R4, R3

Source Code VM Code

VAR X,Y,Z : INTEGER;

BEGIN

X := 1;

WHILE X < 10 DO

X := Y + Z;

ENDDO

END;

[1] pusha X

[2] push 1

[3] store

[4] push X

[5] push 10

[6] GE

[7] BrTrue 14

[8] pusha X

[9] push Y

[10] push Z

[11] add

[12] store

[13] jump 4

Stack Machine Example (a)

VM Code Stack Memory

[1] pusha X

[2] push 1

[3] store [3]

&X

1

&X

[1] [2]

X 1
Y 5
Z 10

[4] push X

[5] push 10

[6] GE

[7] BrTrue 14 [7]

1

[4]

1

10

[5]

0

[6]

X 1
Y 5
Z 10

Stack Machine Example (b)

VM Code Stack Memory

[8] pusha X

[9] push Y

[10] push Z

[11] add

[12] store [12]

&X

[8]

&X

5

[9]

&X

5

10

[10]

15

&X

[11]
X 15
Y 5
Z 10

[13] jump 4

Switch Threading

Instructions are stored as an array of integer tokens. A switch
selects the right code for each instruction.

typedef enum {add,load,store,· · · } Inst;

void engine () {
static Inst prog[] = {load,add,· · · };
Inst *pc = &prog;

int Stack[100]; int sp = 0;

for (;;)

switch (*pc++) {
case add: Stack[sp-1]=Stack[sp-1]+Stack[sp];

sp--; break;

}}}

Switch threading example

Switch Threading in Java

Let’s look at a simple Java switch interpreter.

We have a stack of integers stack and a stack pointer sp.

There’s an array of bytecodes prog and a program counter pc.

There is a small memory area memory, an array of 256
integers, numbered 0–255. The LOAD, STORE, ALOAD, and
ASTORE instructions access these memory cells.

Bytecode semantics

mnemonic opcode stack-pre stack-post side-effects

ADD 0 [A,B] [A+B]

SUB 1 [A,B] [A-B]

MUL 2 [A,B] [A*B]

DIV 3 [A,B] [A-B]

LOAD X 4 [] [Memory[X]]

STORE X 5 [A] [] Memory[X] = A

PUSHB X 6 [] [X]

PRINT 7 [A] [] Print A

PRINTLN 8 [] [] Print a newline

EXIT 9 [] [] The interpreter exits

PUSHW X 11 [] [X]

Bytecode semantics. . .

mnemonic opcode stack-pre stack-post side-effects

BEQ L 12 [A,B] [] if A=B then PC+=L

BNE L 13 [A,B] [] if A!=B then PC+=L

BLT L 14 [A,B] [] if A<B then PC+=L

BGT L 15 [A,B] [] if A>B then PC+=L

BLE L 16 [A,B] [] if A<=B then PC+=L

BGE L 17 [A,B] [] if A>=B then PC+=L

BRA L 18 [] [] PC+=L

ALOAD 19 [X] [Memory[X]]

ASTORE 20 [A,X] [] Memory[X] = A

SWAP 21 [A,B] [B,A]

Example programs

This program prints a newline character and then exits:

PRINTLN

EXIT

Or, in binary: 〈8, 9〉 This program prints the number 10, then a
newline character, and then exits:

PUSHB 10

PRINT

PRINTLN

EXIT

Or, in binary: 〈6, 10, 7, 8, 9〉

Example programs. . .

This program pushes two values on the stack, then performs an
ADD instruction which pops these two values off the stack, adds
them, and pushes the result. PRINT then pops this value off the
stack and prints it:

PUSHB 10

PUSHB 20

ADD

PRINT

PRINTLN

EXIT

Or, in binary: 〈6, 10, 6, 20, 0, 7, 8, 9〉

Example program. . .

This program uses the LOAD and STORE instructions to store a
value in memory cell number 7:

PUSHB 10

STORE 7

PUSHB 10

LOAD 7

MUL

PRINT

PRINTLN

EXIT

Or, in binary: 〈6, 10, 5, 7, 6, 10, 4, 7, 2, 7, 8, 9〉

Print the numbers 1 through 9.

i = 1; while (i < 10) do {print i; println; i++;}

PUSHB 1 # mem[1] = 1;

STORE 1

LOAD 1 # if mem[1] < 10 goto exit

PUSHB 10

BGE

LOAD 1 # print mem[i] value

PRINT

PRINTLN

PUSHB 1 # mem[1]++

LOAD 1

ADD

STORE 1

BRA # goto top of loop

EXIT

Bytecode Description

ADD : Pop the two top integers A and B off the stack, then
push A + B.

SUB : As above, but push A − B.

MUL : As above, but push A ∗ B.

DIV : As above, but push A/B.

PUSHB X : Push X , a signed, byte-size, value, on the stack.

PUSHW X : Push X , a signed, word-size, value, on the stack.

PRINT : Pop the top integer off the stack and print it.

PRINTLN : Print a newline character.

EXIT : Exit the interpreter.

Bytecode Description. . .

LOAD X : Push the contents of memory cell number X on the
stack.

STORE X : Pop the top integer off the stack and store this value
in memory cell number X .

ALOAD : Pop the address of memory cell number X off the
stack and push the value of X .

ASTORE : Pop the address of memory cell number X and the
value V off the stack and store the V in X .

SWAP : Exchange the two top elements on the stack.

Bytecode Description. . .

BEQ L : Pop the two top integers A and B off the stack, if
A == B then continue with instruction PC + L,
where PC is address of the instruction following this
one. Otherwise, continue with the next instruction.

BNE L : As above, but branch if A 6= B.

BLT L : As above, but branch if A < B.

BGT L : As above, but branch if A > B.

BLE L : As above, but branch if A ≤ B.

BGE L : As above, but branch if A ≥ B.

BRA L : Continue with instruction PC + L, where PC is the
address of the instruction following this one.

Switch Threading in Java

public class Interpreter {

static final byte ADD = 0;

static final byte SUB = 1;

static final byte MUL = 2;

static final byte DIV = 3;

static final byte LOAD = 4;

static final byte STORE = 5;

static final byte PUSHB = 6;

static final byte PRINT = 7;

static final byte PRINTLN= 8;

static final byte EXIT = 9;

static final byte PUSHW = 11;

static final byte BEQ = 12;

static final byte BNE = 13;

static final byte BLT = 14;

static final byte BGT = 15;

static final byte BLE = 16;

static final byte BGE = 17;

static final byte BRA = 18;

static final byte ALOAD = 19;

static final byte ASTORE = 20;

static final byte SWAP = 21;

static void interpret (byte[] prog) throws Exception {

int[] stack = new int[100];

int[] memory = new int[256];

int pc = 0;

int sp = 0;

while (true) {

switch (prog[pc]) {

case ADD : {

stack[sp-2]+=stack[sp-1]; sp--;

pc++; break;

}

/* Same for SUB, MUL, DIV. */

case LOAD : {

stack[sp] = memory[(int)prog[pc+1]];

sp++; pc+=2; break;}

case STORE : {

memory[prog[pc+1]] = stack[sp-1];

sp-=1; pc+=2; break;}

case ALOAD : {

stack[sp-1] = memory[stack[sp-1]];

pc++; break;}

case ASTORE : {

memory[stack[sp-1]] = stack[sp-2];

sp-=2; pc++; break;}

case SWAP : {

int tmp = stack[sp-1];

stack[sp-1] = stack[sp-2];

stack[sp-2]=tmp;

pc++; break; }

case PUSHB : {

stack[sp] = (int)prog[pc+1];

sp++; pc+=2; break; }

/* Similar for PUSHW. */

case PRINT : {

System.out.print(stack[--sp]);

pc++; break; }

case PRINTLN: {

System.out.println(); pc++; break; }

case EXIT : {return;}

case BEQ : {/*Same for BNE,BLT,BGT,BLE,BGE*/

pc+= (stack[sp-2]==stack[sp-1])?

2+(int)prog[pc+1]:2;

sp-=2; break; }

case BRA : {

pc+= 2+(int)prog[pc+1]; break; }

default : throw new Exception("Illegal");

}}}}

Switch Threading. . .

Switch (case) statements are implemented as indirect jumps
through an array of label addresses (a jump-table). Every
switch does 1 range check, 1 table lookup, and 1 jump.

switch (e) {
case 1: S1; break;

case 3: S2; break;

default: S3;

}

⇒

JumpTab = {0,&Lab1,&Lab3,&Lab2};
if ((e < 1) || (e > 3)) goto Lab3;

goto *JumpTab[e];

Lab1: S1; goto Lab4;

Lab2: S2; goto Lab4;

Lab3: S3;

Lab4:

Direct Call Threading

Direct Call Threading

Every instruction is a separate function.

The program prog is an array of pointers to these functions.

I.e. the add instruction is represented as the address of the
add function.

pc is a pointer to the current instruction in prog.

(*pc++)() jumps to the function that pc points to, then
increments pc to point to the next instruction.

Hard to implement in Java.

typedef void (* Inst)();

Inst prog[] = {&load,&add,· · · };

Inst *pc = &prog;

int Stack[100]; int sp = 0;

void add(); {
Stack[sp-1]=Stack[sp-1]+Stack[sp];

sp--;}

void engine () {
for (;;) (*pc++)()

}

Direct Call Threading. . .

pc

(32/64−bit address)
VM Code Program Code implementing VM instructions

void Store() {

void add(){S[sp−1]=S[sp−1]+S[sp];sp−−;}

void sub(){S[sp−1]=S[sp−1]−S[sp];sp−−;}

}

Memory[S[sp−1]]=S[sp];sp−=2;

&add

&sub

&store

&push

&&add

&store

Direct Call Threading. . .

In direct call threading all instructions are in their own
functions.

This means that VM registers (such as pc, sp) must be in
global variables.

So, every time we access pc or sp we have to load them from
global memory. ⇒ Slow.

With the switch method pc and sp are local variables. Most
compilers will keep them in registers. ⇒ Faster.

Also, a direct call threaded program will be large since each
instruction is represented as a 32/64-bit address.

Also, overhead from call/return sequence.

Direct Threading

Direct Threading

Each instruction is represented by the address (label) of the
code that implements it.

At the end of each piece of code is an indirect jump
goto *pc++ to the next instruction.

"&&" takes the address of a label. goto *V jumps to the label
whose address is stored in variable V. This is a gcc extensions
to C.

typedef void *Inst

static Inst prog[]={&&add,&&sub,· · · };

void engine() {
Inst *pc = &prog;

int Stack[100]; int sp=0;

goto **pc++;

add: Stack[sp-1]+=Stack[sp]; sp--; goto **pc++;

sub: Stack[sp-1]-=Stack[sp]; sp--; goto **pc++;

}

Direct Threading. . .

Direct threading is the most efficient method for instruction
dispatch.

pc

(32/64−bit address)
VM Code Program

&&add

&&add

&&sub

&&store

&&push

&&store

Code implementing VM instructions

store:

add: S[sp−1]=S[sp−1]+S[sp];sp−−;goto *pc++;

sub: S[sp−1]=S[sp−1]−S[sp];sp−−;goto *pc++;

Memory[S[sp−1]]=S[sp];sp−=2;goto *pc++;

Indirect Threading

Indirect Threading

Unfortunately, a direct threaded program will be large since
each instruction is an address (32 or 64 bits).

At the cost of an extra indirection, we can use byte-code
instructions instead.

prog is an array of bytes.

jtab is an array of addresses of instructions.

goto *jtab[*pc++] finds the current instruction (what pc

points to), uses this to index jtab to get the address of the
instruction, jumps to this code, and finally increments pc.

typedef enum {add,load,· · · } Inst;

typedef void *Addr;

static Inst prog[]={add,sub,· · · };

void engine() {
static Addr jtab[]= {&&add,&&load,· · · };
Inst *pc = &prog;

int Stack[100]; int sp=0;

goto *jtab[*pc++];

add: Stack[sp-1]+=Stack[sp]; sp--;

goto *jtab[*pc++];

}

Indirect Threading. . .

S[sp−1]=S[sp−1]−S[s];

VM instructions

S[sp−1]=S[sp−1]+S[s];

sp−−; goto *jtab[*pc++];

Memory[S[sp−1]]=S[sp];

sp−=2; goto *jtab[*pc++];

Jump Table

address)
(32/64−bit

&&add

&&sub

&&store

&&push

&&pusha

&&load

add

sub

store

push

add

store

VM Code
Program

(8−bit index)

pc

add:

sub:

store:

sp−−; goto *jtab[*pc++];

Code implementing

Optimizations

Minimizing Stack Accesses

To reduce the cost of stack manipulation we can keep one or
more of the Top-Of-Stack elements in registers.

In the example below, TOS holds the top stack element.
Stack[sp] holds the element second to the top, etc.

void engine() {
static Inst prog[]={&&add,&&store,· · · };
Inst *pc = &prog; int sp; register int TOS;

goto *pc++;

add: TOS+=Stack[sp]; sp--; goto *pc++;

store: Memory[Stack[sp]]=TOS; TOS=Stack[sp-1]; sp-=2;

goto *pc++;

}

Instruction Sets Revisited

We can (sometimes) speed up the interpreter by being clever
when we design the VM instruction set:

1 Combine often used code sequences into one instruction. E.g.
muladd a, b, c , d for a := b ∗ c + d . This will reduce the
number of instructions executed, but will make the VM engine
larger.

2 Reduce the total number of instructions, by making them
simple and RISC-like. This will increase the number of
instructions executed, but will make the VM engine smaller.

A small VM engine may fit better in the cache than a large
one, and hence yield better overall performance.

Just-In-Time Compilation

Used to be called Dynamic Compilation before the marketing
department got their hands on it. Also a verb, jitting.

The VM code is compiled to native code just prior to
execution. Gives machine independence (the bytecode can be
sent over the net) and speed.

When? When a class/module is loaded? The first time a
method/procedure is called? The 2nd time it’s called?

Transfer bytecodes over the net

Java
Source

compiler
Java

code
byte−

code
byte−

interpreter
Java VM

Java bytecode
to native JIT

Native
mchine
code

SPARC

ALPHA

Server

Client

Summary

Readings and References

Louden, pp. 4–5.

M. Anton Ertl, Stack Caching for Interpreters, ACM
Programming Language Design and Implementation
(PLDI’95), 1995, pp. 315–318.
http://www.complang.tuwien.ac.at/papers/ertl94sc.ps.Z

Todd Proebsting, Optimizing an ANSI C Interpreter with

Superoperators, ACM Principles of Programming Languages
(POPL’96), January 1996, pp. 322–332.
http://www.acm.org/pubs/articles/proceedings/plan/199448/p322-proebsting/p322-proebsting.pdf

P. Klint, Interpretation Techniques, Software — Practice &
Experience, 11(9) 1981, 963–973.

http://www.complang.tuwien.ac.at/papers/ertl94sc.ps.Z
http://www.acm.org/pubs/articles/proceedings/plan/199448/p322-proebsting/p322-proebsting.pdf

Summary

Direct threading is the most efficient dispatch method. It
cannot be implemented in ANSI C. Gnu C’s “labels as values”
do the trick.

Indirect threading is almost as fast as direct threading. It may
sometimes even be faster, since the interpreted program is
smaller and may hence fits better in the cache.

Call threading is the slowest method. There is overhead from
the jump, save/restore of registers, the return, as well as the
fact that VM registers have to be global.

Summary. . .

Switch threading is slow but has the advantage to work in all
languages with a case statement.

The interpretation overhead consists of dispatch overhead

(the cost of fetching, decoding, and starting the next
instruction) and argument access overhead.

You can get rid of some of the argument access overhead by
caching the top k elements of the stack in registers. See Ertl’s
article.

Jitting is difficult on machines with separate data and code
caches. We must generate code into the data cache, then do
a cache flush, then jump into the new code. Without the
flush we’d be loading the old data into the code cache!

