
CSc 453

Compilers and Systems Software

19 : Code Generation I

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2009 Christian Collberg

collberg@gmail.com

Introduction

Compiler Phases

We are here!

AST

asm

Semantic
Analyser

Interm.
Code Gen

IR

Machine
Code Gen

IR AST

Lexer

tokens

source

errors

Parser

errors

Optimize

errors

Intermediate Code

Generation

Semantic Analysis,

Intermediate Code

Separation into

Basic Blocks;

Flow analysis;

Next−use info

computation;

X is defined

here:

X is used

here:

Control−Flow Graph

Assembly
Code

Assembler

Machine

Code

Peephole

Optimization

Register

Assignment

Register

Allocation

Register

Spilling

Instruction

Selection

Instruction

Scheduling

Lexing, Parsing

Code Generation Issues

The purpose of the code generation phase of the compiler is
to transform the intermediate code produced by the front end
into some other code that can be executed.

Often the the code generator will produce assembly code or
object code which (after assembly and linking) can be directly
executed by the hardware.

Alternatively, the code generator can generate C-code and use
the native C-compiler as the “real” back-end.

Or, the code generator can generate code for a “virtual
machine”, and use an interpreter to execute the code.

We expect the code generator to produce code that is as
efficient as possible.

Code Generation Issues. . .

Code

Tree

DAG

t1 := a + b
t2 := c + t1
d := t2

Tuples

Instruction
Selection

Register
Allocation

Code Generation

C−Code
Generation

C−Code

C−Compiler

Get Next
Instruction

Execute
Instruction

Interpretation

Intermediate Code

Absolute
Machine Code

Assembly
Code

Relocatable

Code Generation Issues. . .

The input to the code generator can be any one of the
intermediate representations we’ve discussed: Trees, Tuples,
Graphs,. . . The work of the code generator consists of several
(interdependent) tasks:

Instruction

selection: Which instructions should be
generated?
scheduling: In which order should they be
generated?

Register

allocation: Which variables should be kept in
registers?
assignment: In which registers should they be
stored?
spilling: Which registers should be spilled
when?

Architectures

Machine Architectures—Instruction Sets

3-Register: add R1, R2, R3

[R1 := R2 + R3] (MIPS,VAX,· · ·).

Register-Address: add R, Addr

[R := R + Addr] (VAX,x86,MC68k)

2-Register: add R1, R2

[R1 := R1 + R2] (VAX,x86,MC68k)

2-Address: add Addr1, Addr2

[Addr1 := Addr1 + Addr2] (VAX)

3-Address: add Addr1, Addr2, Addr3

[Addr1 := Addr2 + Addr3] (VAX)

Machine Architectures—Register Classes

General One set of register that can hold any type of data
(VAX, Alpha).

Integer+Float Separate integer and floating point register sets
(Sparc, MIPS).

Integer+Float+Address Separate integer, floating point, and
address register sets (MC68k).

Machine Architectures—Addressing Modes

Immediate: #X The value of the constant X. (All architectures.)

Register Direct: R The contents of register R. (All.)

Register Indirect: (R) The contents of the memory address in
register R. (All.)

Register Indirect with increment: (R+) The contents of the
memory address in register R. R is incremented by the
size of the instruction (i.e. if MOVE.W (R+),Addr

moves two bytes, then R would be incremented by
2). (VAX, MC68k.)

Register Ind. with Displacement: d(R) The contents of the
memory address R+d, where R is a register and d a
(small) constant. (All architectures.)

Machine Architectures—Instruction Cost

The Cost of an instruction is the number of machine cycles it
takes to execute it.

On RISCs, most instructions take 1 cycle to execute. Loads,
stores, branches, multiplies, and divides may take longer.

On CISCs, the number of cycles required to execute an
instruction Instr Op1, Op2 is

cost(Instr)+cost(Op1)+cost(Op2). cost(Opi
) is the

number of cycles required to compute the addressing mode
Op

i
.

A Simple Example

Example — Source

A straight-forward code generator considers one tuple at a
time, without looking at other tuples. The code generator is
simple, but the generated code is sub-optimal.

The Source Program:

int A[5], i, x;

main(){
for(i=1;i<=5;i++)

x=x*A[i]+A[i];

}

Example — Intermediate Code

int A[5], i, x;

main(){for(i=1;i<=5;i++) x=x*A[i]+A[i];}

The Tuple Code

(1) i := 1

(2) T0 := i

(3) IF T0<6 GOTO (5)

(4) GOTO (17)

(5) T1 := i

(6) T2 := A[T1]

(7) T3 := x

(8) T4 := T2*T3

(9) T5 := i

(10) T6 := A[T5]

(11) T7 := T4+T6

(12) x := T7

(13) T8 := i

(14) T9 := T8+1

(15) i := T9

(16) GOTO (2)

Example – Unoptimized MIPS Code

(1) i := 1

li $2,0x1 # $2 := 1

sw $2,i # i := $2

L2: (2) T0 := i

lw $2,i # $2 := i

(3) IF i < 6 GOTO (5)

slt $3,$2,6 # $3 := i < 6

bne $3,$0,L5 # IF $36=0 GOTO L5

(4) GOTO (17)

j L3 # GOTO L3

L5: (5) T1 := i

lw $2,i # $2 := CONT(i)

(6) T2 := A[T1]

move $3,$2 # $3 := $2

sll $2,$3,2 # $2 := $3 * 4

la $3,A # $3 := ADDR(A)

addu $2,$2,$3 # $2 := $2 + $3

lw $2,0($2) # $2 := CONT(A[i])

(7) T3 := x

lw $3,x # $3 := CONT(x);

(8) T4 := T2 * T3

mult $3,$2 # $lo := $3 * $2

mflo $4 # $4 := $lo

(9) T5 := i

lw $2,i # $2 := CONT(i)

(10) T6 := A[T5]

move $3,$2 # $3 := $2

sll $2,$3,2 # $2 := $3 * 4

la $3,A # $3 := ADDR(A)

addu $2,$2,$3 # $2 := $2 + $3

lw $3,0($2) # $2 := CONT(A[i])

(11) T7 := T4 + T6

addu $2,$4,$3 # $2 := $4 + $3

(12) x := T7

sw $2,x # x := $2

(13) T8 := i

lw $3,i # $3 := CONT(i)

(14) T9 := T8 + 1

addu $2,$3,1 # $2 := $3 + 1

move $3,$2 # $3 := $2

(15) i := T9

sw $3,i # i := $3

(16) GOTO (2)

j L2 # GOTO L2

L3:

Common Sub-expression
Elimination

Example — After CSE

The generated code becomes a lot faster if we perform
Common Sub-Expression Elimination (CSE) and keep the
index variable i in a register ($6) over the entire loop:

(1) i := 1

li $6,0x1 # $6 := 1

L2: (2) T0 := i

(3) IF i < 6 GOTO (5)

slt $3,$6,6 # $3 := i < 6

bne $3,$0,L5 # IF $36=0 GOTO L5

(4) GOTO (17)

j L3 # GOTO L3

A[T1] is computed once, and the result is kept in register $5
until it’s needed the next time.

L5: (5) T1 := i

(6) T2 := A[T1]

move $3,$6 # $3 := $6

sll $2,$3,2 # $2 := $3 * 4

la $3,A # $3 := ADDR(A)

addu $2,$2,$3 # $2 := $2 + $3

lw $5,0($2) # $5 := CONT(A[i])

(7) T3 := x

lw $3,x # $3 := CONT(x);

(8) T4 := T2 * T3

mult $3,$5 # $lo := $3 * $5

mflo $4 # $4 := $lo

After the loop we need to store $6 back into i.

(9) T5 := i

(10) T6 := A[T5]

(11) T7 := T4 + T6

addu $2,$4,$5 # $2 := $4 + $5

(12) x := T7

sw $2,x # x := $2

(13) T8 := i

(14) T9 := T8 + 1

(15) i := T9

addu $6,$6,1 # $6 := $6 + 1

(16) GOTO (2)

j L2 # GOTO L2

L3:sw $6,i # i := $6

More Optimization

Example — More Register Allocation

Since x and ADDR(A) seem to be used a lot in the loop, we
keep them in registers ($7 and $8, respectively) as well.

We also reverse the comparison, which allows us to remove
one jump.

The move instruction is unnecessary, so we remove it also.

(1) i := 1

li $6,0x1 # $6 := 1

lw $7,x # $7 := CONT(x);

la $8,A # $8 := ADDR(A)

L2: (2) T0 := i

(3) IF i < 6 GOTO (5)

(4) GOTO (17)

sge $3,$6,6 # $3 := i >= 6

bne $3,$0,L3 # IF $36=0 GOTO L3

L5: (5) T1 := i

(6) T2 := A[T1]

sll $2,$6,2 # $2 := $3 * 4

addu $2,$2,$8 # $2 := $2 + $8

lw $5,0($2) # $5 := CONT(A[i])

(7) T3 := x

(8) T4 := T2 * T3

mult $7,$5 # $lo := $7 * $5

mflo $4 # $4 := $lo

(9) T5 := i

(10) T6 := A[T5]

(11) T7 := T4 + T6

(12) x := T7

addu $7,$4,$5 # $7 := $4 + $5

(13) T8 := i

(14) T9 := T8 + 1

(15) i := T9

addu $6,$6,1 # $6 := $6 + 1

(16) GOTO (2)

j L2 # GOTO L2

L3:sw $6,i # i := $6

sw $7,x # x := $7

Example — Summary

The unoptimized code (produced by gcc -S -g) was 28
instructions long. Our optimized code is 16 instructions.
Improvement: 42%.

More importantly, in the original code there were 26
instructions inside the loop, and 2 outside. Since the loop
runs 5 times, we will execute 3 + 5 ∗ 25 = 128 instructions.

In the optimized case, we have 11 instructions in the loop and
5 outside. We will execute only 5 + 5 ∗ 11 = 60 instructions.
Improvement: 53%.

Instruction Selection

Instruction Selection

Instruction selection is usually pretty simple on RISC
architectures – there is often just one possible sequence of
instructions to perform a particular kind of computation.

CISC’s like the VAX, on the other hand, leave the compiler
with more choices: ADD2 1, R1 ADD3 R1, 1, R1 INC R1 all
add 1 to register R1.

V ∗ 2 – Unoptimized Sparc Code

set V, %o0 # %o0 := ADDR(V);

ld [%o0], %o0 # %o0 := CONT(V);

set 2, %o1 # %o1 := 2;

call .mul, 2 # %o0 := %o0 * %o1;

nop # Empty delay slot

V ∗ 2 – Better Instr. Selection

The Sparc has a library function .mul and a hardware
multiply instruction smul:

set V, %o0

ld [%o0], %o0

smul %o0, 1, %o0 # %o0 := %o0 * %o1;

V ∗ 2 – Even Better Instr. Selection

The Sparc also has hardware shift instructions (sll, srl).
To multiply by 2i we shift i steps to the left.

set V, %o0

ld [%o0], %o0

sll %o0, 1, %o0 # %o0 := %o0 * 2;

Instruction Scheduling

Instruction scheduling is important for architectures with
several functional units, pipelines, delay slots. I.e. most
modern architectures.

The Sparc (and other RISCs) have branch delay slots. These
are instructions (textually immediately following the branch)
that are “executed for free” during the branch.

V ∗ 2 – Unoptimized Sparc Code

ld [%o0], %o0 # %o0 := CONT(V);

set 2, %o1 # %o1 := 2;

call .mul, 2 # %o0 := %o0 * %o1;

nop # Empty delay slot

Instruction Scheduling

V ∗ 2 – Unoptimized Sparc Code

ld [%o0], %o0 # %o0 := CONT(V);

set 2, %o1 # %o1 := 2;

call .mul, 2 # %o0 := %o0 * %o1;

nop # Empty delay slot

V ∗ 2 – Better Instr. Scheduling

ld [%o0], %o0 # %o0 := CONT(V);

call .mul, 2

set 2, %o1 # Filled delay slot

Instruction Scheduling. . .

The Sparc’s integer and floating point units can execute in
parallel. Integer and floating point instructions should
therefore be reordered so that operations are interleaved.

int a, b, c; double x, y, z;

{ a = b - c;

c = a + b;

b = a + c;

y = x * x;

z = x + y;

x = y / z;

}

int a, b, c; double x, y, z;

{ a = b - c; c = a + b; b = a + c;

y = x * x; z = x + y; x = y / z;}

cc -O2 cc -O3

set b,%o3

sub %o0,%o1,%o1

set a,%o0

add %o4,%o5,%o4

add %o0,%o2,%o0

set x, %o0

fmuld %f0,%f2,%f0

sethi %hi(z),%o2

faddd %f6,%f8,%f6

fdivd %f12,%f14,%f12

fmuld %f30,%f30,%f28

set c,%o1

ld [%o1],%o2

faddd %f30,%f28,%f30

set b,%o0

ld [%o0],%o4

set z,%g1

sub %o4,%o2,%o2

fdivd %f28,%f30,%f2

add %o4,%o2,%o4

add %o2,%o4,%o5

Register
Allocation/Assignment/Spilling

Registers — Why do we need them?

1 We only need 4–7 bits to access a register, but 32–64 bits to
access a memory word.

2 Hence, a one-word instruction can reference 3 registers but a
two-word instruction is necessary to reference a memory word.

3 Registers have short access time.

Register — When do we use them?

1 Instructions take operands in regs.

2 Intermediate results are stored in regs.

3 Procedure arguments are passed in regs.

4 Loads and Stores are expensive ⇒ keep variables in regs for as
long as possible.

5 Common sub-expressions are stored in regs.

Register Allocation/Assignment

Register Allocation:

First we have to decide which variables should reside in
registers at which point in the program.

Variables that are used frequently should be favored.

Register Assignment:

Secondly, we have to decide which physical registers should
hold each of these variables.

Some architectures have several different register classes,
groups of registers that can only hold one type of data:

MIPS & Sparc have floating point and integer registers;
MC68k has address, integer, and floating point, etc.

Register Assignment

Sparc passes it’s first 6 arguments in registers
%o0,%o1,%o2,%o3,%o4,%o5.

If a value is used twice, first in a computation and then in a
procedure call, we should allocate the value to the appropriate
procedure argument register.

a = b + 15; /* ⇐ b is used here /*

P(b); /* ⇐ and here. */

⇓ ⇓ ⇓
ld [%fp-8],%o0 # %o0 := CONT(b);

add %o0,15,%o1 # %o1 := %o0 + 15

st %o1,[%fp-4] # a := %o1;

call P,1 # P(%o0)

Register Spilling

We may have 8 | 16 | 32 regs available.

When we run out of registers (during code generation) we
need to pick a register to spill. I.e. in order to free the
register for its new use, it’s current value first has to be stored
in memory.

Which register should be spilt? Least recently used, Least
frequently used, Most distant use, . . . (take your pick).

Register Spilling — Example

Assume a machine with registers R1--R3.

R1 holds variable a; R2 holds b, R3 holds c, and R4 holds d.
Generate code for:

x = a + b; # ⇐ Which reg for x?

y = x + c;

Which register should be spilt to free a register to hold x?

Register Allocation Example

FOR i := 1 TO n DO

B[5,i] := b * b * b;

FOR j := 1 TO n DO

FOR k := 1 TO n DO

A[i,j] := A[i,k] * A[k,j];

2 Registers Available: k and ADDR(A) in registers. (Prefer
variables in inner loops).

4 Registers Available: k, ADDR(A), j, and i in registers. (Prefer
index variables).

5 Registers Available: k, ADDR(A), j, i, and b in registers.
(Prefer most frequently used variables).

Register Spilling Example

FOR i := 1 TO 100000 DO

A[5,i] := b;

FOR j := 1 TO 100000 DO

A[j,i] := <Complicated Expression>;

1st Attempt (4 Regs available):

Allocation/Assignment: i in R1, j in R2, ADDR(A) in R3,
ADDR(A[5,]) in R4.

Spilling: Spill R4 in the inner loop to get enough registers to
evaluate the complicated expression.

Register Spilling Example. . .

FOR i := 1 TO 100000 DO

A[5,i] := b;

FOR j := 1 TO 100000 DO

A[j,i] := <Complicated Expression>;

2nd Attempt (4 Regs available):

Allocation/Assignment: i in R1, j in R2, ADDR(A) in R3.

Spilling: No spills. But ADDR(A[5,i]) must be loaded every
time in the outer loop.

Summary

Readings and References

Read Louden:

Basic code generation 407–416
Data structures 416–428
Control structures 428–436
Procedure calls 436–443

Read the Dragon book:

Introduction 513–521
Basic Blocks 528–530
Flow Graphs 532–534

Summary

Instruction selection picks which instruction to use, instruction
scheduling picks the ordering of instructions.

Register allocation picks which variables to keep in registers,
register assignment picks the actual register in which a
particular variable should be stored.

We prefer to keep index variables and variables used in inner
loops in registers.

When we run out of registers, we have to pick a register to
spill, i.e. to store back into memory. We avoid inserting spill
code in inner loops.

Summary. . .

Code generation checklist:
1 Is the code correct?
2 Are values kept in registers for as long as possible?
3 Is the cheapest register always chosen for spilling?
4 Are values in inner loops allocated to registers?

A basic block is a straight-line piece of code, with no jumps in
or out except at the beginning and end.

Local code generation considers one basic block at a time,
global one procedure, and inter-procedural one program.

