
CSc 453

Compilers and Systems Software

23 : OO Languages

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2009 Christian Collberg

collberg@gmail.com

Object-Oriented Languages

Object-oriented languages extend imperative languages with:
1 A classification scheme that allows us to specify is-a as well as

has-a relationships. Has-a is supported by Pascal, where we
can declare that one data item has another item (a record
variable has-a record field). Object-Pascal, Oberon, etc,
extends this capability with inheritance which allows us to
state that one data item is (an extension of) another item.

2 Late binding, which allows us to select between different
implementations of the same abstract data type at run-time.

Object-Oriented Languages. . .

3 Polymorphism, which is the ability of a variable to store values
of different types. OO languages support a special kind of
polymorphism, called inclusion polymorphism, that restricts
the values that can be stored in a variable of type T to values
of type T or subtypes of T .

4 Data encapsulation. Data (instance variables) and operations
(methods) are defined together.

5 Templates and objects. A template (class or prototype)
describes how to create new objects (instances of abstract
data types).

Compiling OO Languages

Runtime type checking (a variable of type ref T may only
reference objects of type T or T ’s subtypes).

Because of the polymorphic nature of OO languages, we can’t
always know (at compile-time) the type of the object that a
given variable will refer to at run-time. When we invoke a
method we can’t actually know which piece of code we should
execute. Finding the right piece of code is called method

lookup. It can be done by name (Objective-C) or number
(C++).

Most OO languages rely on dynamic allocation. Garbage
collection is a necessary part of the runtime system of a
compiler for an OO language (C++ non-withstanding). This
requires runtime type description.

Example

TYPE Shape = CLASS

x, y : REAL;

METHOD draw(); BEGIN · · · ; END;

METHOD move(X,Y:REAL); BEGIN x := x+X; END;

END;

TYPE Square = Shape CLASS

side : REAL;

METHOD draw(); BEGIN · · · ; END;

END;

TYPE Circle = Shape CLASS

radius : REAL;

METHOD draw(); BEGIN · · · ; END;

METHOD area():REAL; BEGIN · · · END;

END;

// Example in Java

class Shape {
double x, y;

void draw(); { · · · }
void move(double X, double Y); {x = x+X; }}

class Square extends Shape {
double side;

void draw(); { · · · }}
class Circle extends Shape {

double radius;

void draw(); { · · · }
double area(); { · · · }}

(* Example in Modula-3 *)

TYPE Shape = OBJECT

x, y : REAL

METHODS

draw() := DefaultDraw; move(X, Y : REAL):=Move;

END;

Square = Shape OBJECT

side : REAL

METHODS

draw() := SquareDraw

END;

Circle = Shape OBJECT

radius : REAL

METHODS

draw() := CirlceDraw; area() := ComputeArea

END;

(* Example in Modula-3 (continued) *)

PROCEDURE Move (Self : Shape; X, Y : REAL) =

BEGIN · · · END Move;

PROCEDURE DefaultDraw (Self : Shape) =

BEGIN · · · END DefaultDraw;

PROCEDURE SquareDraw (Self : Square) =

BEGIN · · · END SquareDraw;

PROCEDURE CircleDraw (Self : Circle) =

BEGIN · · · END CircleDraw;

PROCEDURE ComputeArea (Self : Circle) : REAL =

BEGIN · · · END ComputeArea;

Example in Oberon-2

TYPE Shape = RECORD x, y : REAL END;

Square = RECORD (Shape) side : REAL END;

Circle = RECORD (Shape) radius : REAL END;

PROCEDURE (Self : Shape) Move (X, Y : REAL) =

BEGIN · · · END Move;

PROCEDURE (Self : Shape) DefaultDraw () =

BEGIN · · · END DefaultDraw;

PROCEDURE (Self : Square) SquareDraw () =

BEGIN · · · END SquareDraw;

PROCEDURE (Self : Circle) CircleDraw () =

BEGIN · · · END CircleDraw;

PROCEDURE (Self : Circle) ComputeArea () : REAL =

BEGIN · · · END ComputeArea;

Record Layout

Record Layout

Single inheritance is implemented by concatenation, i.e. the
instance variables of class C are

1 the variables of C ’s supertype, followed by
2 the variables that C declares itself.

Record
Layout

Inheritance
Hierarchy

C1’s instance vars

C1’s instance vars

C2’s instance vars

C1’s instance vars

C2’s instance vars

C3’s instance vars

C1

C2

C3

The offsets of the variables that C inherits from its supertype
will be the same as in the supertype itself.

In this example, C3 inherits from C2 which inherits from C1.

C3 will have the fields from C1 followed by the fields from C2

followed by C3’s own fields. The order is significant.

Record
Layout

Inheritance
Hierarchy

C1’s instance vars

C1’s instance vars

C2’s instance vars

C1’s instance vars

C2’s instance vars

C3’s instance vars

C1

C2

C3

TYPE Shape =

CLASS x,y: REAL; END;

TYPE Square = Shape

CLASS side:REAL; END;

TYPE Circle = Shape

CLASS radius:REAL; END;

VAR S:Shape;

VAR Q:Square;

VAR C:Circle;

radius:REAL

Shape

Square Circle

Inheritance
Hierarchy

S

Q

C

x:REAL

y:REAL

x:REAL

y:REAL

side:REAL

x:REAL

y:REAL

An OO language compiler would translate the declarations in
the previous slide into something similar to this:

TYPE Shape=POINTER TO RECORD

x, y: REAL;

END;

TYPE Square=POINTER TO RECORD

x, y: REAL;

side:REAL;

END;

TYPE Circle=POINTER TO RECORD

x, y: REAL;

radius:REAL;

END;

VAR S:Shape; Q:Square; C:Circle;

Templates

Class Templates

To support late binding, runtime typechecking, etc, each class is
represented by a template at runtime. Each template has pointers
to the class’s methods and supertype.

methods

Code
for

draw:

move:

area:

parent:

Circle$Template

Shape$Template

draw:

move:

parent:ROOT

Square$draw

Circle$draw

Shape$draw

Circle$area

Shape$move

draw:

move:

parent:

Square$Template

Square’s x,y fields are inherited from Shape. Their offsets
are the same as in Shape.

TYPE $TemplateT=POINTER TO RECORD

parent : $TemplateT;

move : ADDRESS;

draw : ADDRESS;

END;

TYPE Square=POINTER TO RECORD

$template : $TemplateT;

x, y : REAL;

side : REAL;

END;

CONST Square$Template:$TemplateT =

[parent= ADDR(Shape$Template);

move = ADDR(Shape$move);

draw = ADDR(Square$draw);];

Each method is a procedures with an extra argument (SELF), a
pointer to the object through which the method was invoked.

TYPE Shape = CLASS

x, y : REAL;

METHOD draw (); BEGIN · · · ;
METHOD move (X, Y : REAL);

BEGIN x := x+X; · · · END;

END;

⇓
PROCEDURE Shape$move (SELF : Shape; X,Y:REAL);

BEGIN

SELF^.x := SELF^.x + X;

SELF^.y := SELF^.y + X;

END;

Method Lookup

Method Invocation

Sending the message draw to Q:
1 Get Q’s template, T .
2 Get draw’s address at offset 4

in T .
3 Jump to draw’s address, with

Q as the first argument.

draw:

move:

parent:

Square$Template

Shape$Template

draw:

move:

parent: NIL

x = 1

y = 3

side = 15

$template
Q

Square$draw

Shape$move

VAR Q : Square;

BEGIN

Q := NEW (Square);

Q.x := 1; Q.y := 3; Q.side := 15;

Q.draw(); Q.move(20, 30);

END;

⇓
BEGIN

Q := malloc(SIZE(Square));

Q^.$template := Square$Template;

Q^.x := 1; Q^.y := 3; Q^.side := 15;

Q^.$template^.draw(Q);

Q^.$template^.move(Q, 20, 30);

END;

Runtime Type Checking

Inclusion Polymorphism

Consider the last two lines of the example in the following slide:

In L1, S points to a Shape object, but it could just as well
have pointed to an object of any one of Shape’s subtypes,
Square and Circle.

If, for example, S had been a Circle, the assignment C := S

would have been perfectly OK. In L2, however, S is a Shape

and the assignment C := S is illegal (a Shape isn’t a
Circle).

VAR S : Shape; Q : Square; C : Circle;

BEGIN

Q := NEW (Square);

C := NEW (Circle);

S := Q; (* OK *)

S := C; (* OK *)

Q := C; (* Compile-time Error *)

L1: S := NEW (Shape);

L2: C := S; (* Run-time Error *)

END;

Typechecking Rules

TYPE T = CLASS · · · END;

U = T CLASS · · · END;

S = T CLASS · · · END;

VAR t,r : T; u : U; s : S;

A variable of type T may refer to an object of T or one of T’s
subtypes.

Assignment Compile-time Run-Time
t := r; Legal Legal
t := u; Legal Legal
u := t; Legal Check
s := u; Illegal

Run-time Type Checking

Modula-3 Type-test Primitives:

ISTYPE(object, T) Is object’s type a subtype of T?

NARROW(object, T) If object’s type is not a subtype of T, then
issue a run-time type error. Otherwise return
object, typecast to T.

TYPECASE Expr OF Perform different actions depending on the
runtime type of Expr.

The assignment s := t is compiled into s := NARROW(t,

TYPE(s)).

Run-time Type Checking. . .

The Modula-3 runtime-system has three functions that are
used to implement typetests, casts, and the TYPECASE

statement

NARROW takes a template and an object as parameter. It
checks that the type of the object is a subtype of the type of
the template. If it is not, a run-time error message is
generated. Otherwise, NARROW returns the object itself.

1 ISTYPE(S,T : Template) : BOOLEAN;

2 NARROW(Object, Template) : Object;

3 TYPECODE(Object) : CARDINAL;

Algorithm

Run-time Checks

Casts are turned into calls to NARROW, when necessary:

VAR S : Shape; VAR C : Circle;

BEGIN

S := NEW (Shape); C := S;

END;

⇓
VAR S : Shape; VAR C : Circle;

BEGIN

S := malloc (SIZE(Shape));

C := NARROW(S, Circle$Template);

END;

Imlementing ISTYPE

We follow the object’s template pointer, and immediately
(through the templates’ parent pointers) gain access to it’s
place in the inheritance hierarchy.

PROCEDURE ISTYPE (S, T : TemplatePtr) : BOOLEAN;

BEGIN

LOOP

IF S = T THEN RETURN TRUE; ENDIF;

S := S^.parent;

IF S = ROOT THEN RETURN FALSE; ENDIF;

ENDLOOP

END ISTYPE;

Implementing NARROW

NARROW uses ISTYPE to check if S is a subtype of T. Of
so, S is returned. If not, an exception is thrown.

PROCEDURE NARROW(T:TemplatePtr; S:Object):Object;

BEGIN

IF ISTYPE(S^.$template, T) THEN

RETURN S (* OK *)

ELSE WRITE "Type error"; HALT;

ENDIF;

END NARROW;

Run-time Checks — Example

TYPE T = CLASS [· · ·];
S = T CLASS [· · ·];
U = T CLASS [· · ·];
V = U CLASS [· · ·];
X = S CLASS [· · ·];
Y = U CLASS [· · ·];
Z = U CLASS [· · ·];

VAR x : X;

T

S

X Z

U

V Y

Run-time Checks — Example. . .

ISTYPE(x, T)ROOT

parent:

.....

T$Template

ISTYPE(,)

template

instance
vari−
ables

x:

parent:

.....
parent:

.....

parent:

.....

parent:

.....

parent:

.....

parent:

.....

S$Template U$Template

X$Template V$Template Y$Template Z$Template

Compile-Time Organization

Organizing the Symbol Table

In C .M’s method body we can refer to
1 M’s locals and formals, and M’s SELF.
2 C ’s methods and instance variables.
3 Methods and instance variables of C ’s superclasses.

TYPE T = CLASS [

v : INTEGER; c : CHAR;

METHOD P(x:INTEGER); BEGIN · · · v· · · c· · · END;

METHOD Q(x:CHAR); BEGIN · · · v· · · c· · · END;

];

TYPE U = T CLASS [

c : REAL; k : INTEGER;

METHOD P(x:INTEGER); BEGIN · · · v· · · c· · · k· · · END;

METHOD Q(r:REAL); BEGIN · · · v· · · c· · · k· · · END;

];

Homework

Exam Problem

In the following object-oriented program

"TYPE U = T CLASS" means that U inherits from T.
NEW T means that a new object of type T is created.
All methods are virtual, i.e. a method in a subclass overrides a
method with the same name in a superclass.

PROGRAM X;

TYPE T = CLASS [

v : INTEGER;c : CHAR;

METHOD P (x:INTEGER); BEGIN · · · END P;

METHOD Q (x:CHAR); BEGIN · · · END Q;

];

TYPE U = T CLASS [

x : REAL; k : INTEGER;

METHOD R(x:INTEGER); BEGIN · · · END R;

METHOD Q(r:REAL); BEGIN · · · END Q;

];

VAR t : T; u : U;

BEGIN

t := NEW T; u := NEW U; 3

END

1 Draw a figure that describes the state of the program at point
3. It should have one element for each item stored in memory
(i.e. global/heap variables, templates, method object code,
etc.) and should explicitly describe what each pointer points
to.

Summary

Readings and References

Read the Tiger book:

Object-oriented Languages pp. 283–298

For information on constructing layouts for multiple
inheritance, see

William Pugh and Grant Weddell: “Two-directional record
layout for multiple inheritance.”

The time for a type test is proportional to the depth of the
inheritance hierarchy. Many algorithms do type tests in
constant time:

1 Norman Cohen, “Type-Extension Type Tests can be Performed
in Constant Time.”

2 Paul F.Dietz, “Maintaining Order in a Linked List”.

Summary

For single inheritance languages, an instance of a class C
consists of (in order):

1 A pointer to C ’s template.
2 The instance variables of C ’s ancestors.
3 C ’s instance variables.

For single inheritance languages, subtype checks can be done
in O(1) time.

Method invocation is transformed to an indirect call through
the template.

If we can determine the exact type of an object variable at
compile time, then method invocations through that variable
can be turned into “normal” procedure calls.

Summary. . .

A template for class C consists of (in order):
1 A pointer to the template of C ’s parent.
2 The method addresses of C ’s ancestors.
3 Addresses of C ’s methods.
4 Other information needed by the runtime system, such as

The size of a C instance.
C ’s pre- and postorder numbers, if the O(1) subtype test
algorithm is used.
C ’s type code.
A type description of C ’s instance variables. Needed by the
garbage collector.

Confused Student Email

What happens when both a class and its subclass have

an instance variable with the same name?

The subclass gets both variables. You can get at both of
them, directly or by casting. Here’s an example in Java:

class C1 {int a;}

class C2 extends C1 {double a;}

class C {

static public void main(String[] arg) {

C1 x = new C1(); C2 y = new C2();

x.a = 5; y.a = 5.5;

((C1)y).a = 5;

}

}

