
CSc 453

Compilers and Systems Software

24 : Garbage Collection

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2009 Christian Collberg

collberg@gmail.com


Introduction



Dynamic Memory Management

The run-time system linked in with the generated code should
contain routines for allocation/deallocation of dynamic
memory.

Pascal, C, C++, Modula-2 Explicit deallocation of dynamic
memory only. I.e. the programmer is required to keep
track of all allocated memory and when it’s safe to
free it.

Eiffel Implicit deallocation only. Dynamic memory which
is no longer used is recycled by the garbage

collector.

Ada Implicit or explicit deallocation (implementation
defined).

Modula-3 Implicit and explicit deallocation (programmer’s
choice).



Memory Management



Memory Management

In a language such as C or Pascal, there are three ways to
allocate memory:

1 Static allocation. Global variables are allocated at compile
time, by reserving

2 Stack allocation. The stack is used to store activation records,
which holds procedure call chains and local variables.

3 Dynamic allocation. The user can create new memory at will,
by calling a new or (in unix) malloc procedure.

The compiler and run-time system divide the available address
space (memory) into three sections, one for each type of
allocation:



Memory Management. . .

1 The static section is generated by the compiler and cannot be
extended at run-time. Called the uninitialized data

section in unix’s a.out.
2 The stack. The stack grows and shrinks during execution,

according to the depth of the call chain. Infinite recursion
often leads to stack overflow. Large parameters can also result
in the program running out of stack space.

3 The heap. When the program makes a request for more
dynamic memory (by calling malloc, for example), a suitable
chunk of memory is allocated on the heap.



Memory Management. . .

Static allocation – Global
variables

Stack allocation – Procedure
call chains, Local variables.

Dynamic allocation – NEW,
malloc, On the heap.

Heap

(Global Variables)

Initialized Data

(strings,reals...)

Program Code

Stack

Uninitialized Data



Interface to Dynamic allocation

C, C++: char* malloc(size) and free(char*) are
standard library routines.

Pascal: new(pointer var) and dispose(pointer var)

are builtin standard procedures.

Java: new(class name) is a standard function.

LISP: cons creates new cells:

null

b

c null

a

b

c
’(b c) ’(a b c)

TailHead

(cons ’a ’(b c))



Explicit Deallocation



Explicit Deallocation

Pascal’s new/dispose, Modula-2’s ALLOCATE/DEALLOCATE,
C’s malloc/free, C++’s new/delete, Ada’s
new/unchecked deallocation (some implementations).

Problem 1: Dangling references: p=malloc(); q=p;

free(p);.

Problem 2: Memory leaks, Heap fragmentation.

free list:

free list:

16

32

64

Large cell

Small cell

Heap:

128

4

512

8



Implicit Deallocation



Implicit Deallocation

LISP, Prolog – Equal-sized cells; No changes to old cells.

Eiffel, Modula-3 – Different-sized cells; Frequent changes to
old cells.

When do we GC?

Stop-and-copy Perform a GC whenever we run out of
heapspace (Modula-3).

Real-time/Incremental Perform a partial GC for each pointer
assignment or new (Eiffel, Modula-3).

Concurrent Run the GC in a separate process.



Implicit Deallocation. . .

Fragmentation – Compact the heap as a part of the GC, or
only when the GC fails to return a large enough block.

Algorithms: Reference counts, Mark/ssweep, Copying,
Generational.



Garbage Collection Problems



Finding the Object Graph

Finding the roots: The dynamic objects in a program form a
graph. Most GC algorithms need to traverse this
graph. The roots of the graph can be in

1 global variables
2 registers
3 local variables/formal parameters on the stack.

Hence, the compiler must communicate to the GC
which registers/variables contain roots.



Finding internal pointers: Structured variables (arrays, records,
objects) may contain internal pointers. These must
be known to the GC so that it can traverse the
graph. Hence, the compiler must communicate to
the GC the type of each dynamic object and the
internal structure of each type.

Finding the beginning of objects: What happens if the only
pointer to an object points somewhere in the middle
of the object? We must either be able to find the
beginning of the object, or make sure the compiler
does not generate such code.



8:

A

C

%r8

Execution

Stack

for

AR

P

for

AR

Q

for

AR

R

template

G

Globals

Ptrs: [12]

Size:96

Template for P

Ptrs: [0]

Size:4

Template for MAIN

Size:32

Ptrs: [4,12]

Template for T1

Ptrs: [8]

Size: 24

Template for T2

Heap

O: template

O: template

8:

12:

O: template

8:



Pointer Maps

The internal structure of activation records & structured
variables is described by run-time templates.

Every run-time object has an extra word that points to a type

descriptor (or Temaplate), a structure describing which words
in the object are pointers. This map is constructed at
compile-time and stored statically in the data segment of the
executable.



Pointer Maps. . .

When the GC is invoked, registers may also contain valid
pointers. The compiler must therefore also generate (for every
point where the GC may be called) a pointer map that
describes which registers hold live pointers at this point. For
this reason, we usually only allow the GC to run at certain
points, often the points where new is called.

We must also provide pointer maps for every function call
point. A function P may call Q which calls new which
invokes the GC. We need to know which words in P’s
activation record that at this point contain live pointers.



Pointer Maps. . .

How does the GC look up which pointer map belongs to a
particular call to procedure P at a particular address a? The
pointer maps are indexed by the return address of P! So, to
traverse the stack of activation records, the GC looks at each
frame, extracts the return address, finds the pointer map for
that address, and extracts each pointer according to the map.



GC Algorithms: Reference
Counts



Algorithm: Reference Counts

An extra field is kept in each object containing a count of the
number of pointers which point to the object.

Each time a pointer is made to point to an object, that
object’s count has to be incremented.

Similarly, every time a pointer no longer points to an object,
that object’s count has to be decremented.

When we run out of dynamic memory we scan through the
heap and put objects with a zero reference count back on the
free-list.

Maintaining the reference count is costly. Also, circular
structures (circular linked lists, for example) will not be
collected.



Every object records the number of pointers pointing to it.

When a pointer changes, the corresponding object’s reference
count has to be updated.

GC: reclaim objects with a zero count. Circular structures will
not be reclaimed.

Live cells

1 2 1 1

be reclaimed)

Garbage (will Garbage (won’t

be reclaimed)

1

H

e

a

p

ba

Global

Variables

10



NEW(p) is implemented as:

malloc(p); p↑.rc := 0;

p↑.next:=q is implemented as:

z := p↑.next;
if z 6= nil then

z↑.rc--; if z↑.rc = 0 then reclaim z↑ endif;

endif;

p↑.next := q;

q↑.rc++;

This code sequence has to be inserted by the compiler for
every pointer assignment in the program. This is very
expensive.



GC Algorithms:
Mark-and-Sweep



Algorithm: Mark and Sweep

The basic idea behind Mark-and-Sweep is to traverse and
mark all the cells that can be reached from the root cells.

A root cell is any pointer on the stack or in global memory
which points to objects on the heap.

Once all the live cells (those which are pointed to by a global
variable or some other live cells) have been marked, we scan
through the heap and separate the live data from the garbage.

If we are dealing with equal size objects only (this is the case
in LISP, for example) the we scan the heap and link all the
unmarked objects onto the free list. At the same time we can
unmark the live cells.



Algorithm: Mark and Sweep. . .

If we have cells of different sizes, just linking the freed objects
together may result in heap fragmentation. Instead we need to
compact the heap, by collecting live cells together in a
contiguous memory area on the heap and doing the same with
the garbage cells in another area.



Marking Phase:

1 Mark all objects unmarked.

2 Find all roots, i.e. heap pointers in stack, regs & globals.

3 Mark reachable blocks using a depth first search starting at
the roots.

1 DFS may run out of stack space!
2 Use non-recursive (Deutsch-Schorr-Waite) DFS.

Scanning Phase:

same-size-cells Scan heap and put un-marked (non-reachable) cells
back on free-list.

different-size-cells Compact the heap to prevent fragmentation.



Marking Phase



Marking Phase

A straight-forward implementation of mark and sweep may
run into memory problems itself! A depth-first-search makes
use of a stack, and the size of the stack will be the same as
the depth of the object graph.

Remember that the stack and the heap share the same
memory space, and may even grow towards eachother.

So, if we’re out of luck we might run into this situation:

the heap is full (otherwise we wouldn’t be gc:ing!),
the object graph is deep,
we run out of stack space during the marking phase.

We’re now out of memory alltogether. Difficult to recover
from!



Marking Phase. . .

Fortunately, there is a smart algorithm for marking in constant
space, called the Deutsch-Schorr-Waite algorithm.
Actually, it was developed simultaneously by Peter Deutsch
and by Herbert Schorr and W. M. Waite.

The basic idea is to store the DFS stack in the object graph
itself. When a new node (object) is encountered

1 we set the “marked”-bit to 1,
2 the node (object) is made to point to the previous node,
3 two global variables current and previous are updated.

current points to the current cell, previous to the
previously visited cell.



Marking: “Look Ma, No Stack!”

Use pointer reversal to encode the DFS stack in the object
graph itself.

When the DFS reaches a new cell, change a pointer in the cell
to point back to the DFS parent cell. When we can go no
deeper, return, following the back links, restoring the links.

M

(1)

(2)

/

(3)

/

(1)

M

(2) (3)

// B B

M M

current

previous

B = Back Pointer

M = Marked

(4)
(5)

/ /

(4)
(5)

/ /



Compaction Phase



Sweeping: Compaction

Compaction

A B C ED F

data1 data2 data3

data1 data2 data3

A B C ED F

1 Calculate the forwarding address of each cell.

2 Store the forwarding address of cell B in B.forw addr.

3 If p points to cell B, replace p with B.forw addr.

4 Move all cells to their forwarding addresses.



GC Algorithms: Copying
Collection



Copying Collection

Even if most of the heapspace is garbage, a mark and sweep
algorithm will touch the entire heap. In such cases it would be
better if the algorithm only touched the live objects.

Copying collection is such an algorithm. The basic idea is:
1 The heap is divided into two spaces, the from-space and the

to-space.
2 We start out by allocating objects in the from-space.
3 When from-space is full, all live objects are copied from

from-space to to-space.
4 We then continue allocating in to-space until it fills up, and a

new GC starts.



Copying Collection. . .

An important side-effect of copying collection is that we get
automatic compaction – after a collection to-space consists
of the live objects in a contiguous piece of memory, followed
by the free space.

This sounds really easy, but · · · :
We have to traverse the object graph (just like in mark and
sweep), and so we need to decide the order in which this
should be done, depth-first or breadth-first.
DFS requires a stack (but we can, of course, use pointer
reversal just as with mark and sweep), and BFS a queue. We
will see later that encoding a queue is very simple, and hence
most implementations of copying collection make use of BFS.



Copying Collection. . .

This sounds really easy, but · · ·
An object in from-space will generally have several objects
pointing to it. So, when an object is moved from from-space

to to-space we have to make sure that we change the pointers
to point to the new copy.



Copying Collection. . .

Mark-and-sweep touches the entire heap, even if most of it is
garbage. Copying collection only touches live cells.

Copying collection divides the heap in two parts: from-space

and to-space.

to-space is automatically compacted.

How to traverse object graph: BFS or DFS?

How to update pointers to moved objects?

Algorithm:

1 Start allocating in from-space.

2 When from-space is full, copy live objects to to-space.

3 Now allocate in to-space.



Traversing the Object Graph:

Most implementations use BFS.

Use the to-space as the queue.

Updating (Forwarding) Pointers:

When an object is moved its new address is stored first in the
old copy.

Example:

GC

roots:

from−space to−space

roots:

from−space to−space



Algorithm:

1 scan := next := ADDR(to-space)

[scan · · · next] hold the BFS queue.
Objects above scan point into to-space. Objects between
scan and next point into from-space.

2 Copy objects pointed to by the root pointers to to-space.

3 Update the root pointers to point to to-space.

4 Put each object’s new address first in the original.

5 Repeat (recursively) with all the pointers in the new
to-space.

1 Update scan to point past the last processed node.
2 Update next to pointe past the last copied node.

Continue while scan < next.



Copying Collection Example. . . (A)

scan

rootsroots
A

C

D

E

F

from−space

B

from−space
to−space

A

B

C

D

E

F

D

B

next



Copying Collection Example. . . (B)

F

roots to−space

D

B

next

scan

from−space

A

B

C

D

E

F

roots to−space

D

B

scan

next

E

from−space

A

B

C

D

E



GC Algorithms: Generational
Collection



Generational Collection

Works best for functional and logic languages (LISP, Prolog,
ML, . . . ) because

1 they rarely modify allocated cells
2 newly created objects only point to older objects ((CONS A B)

creates a new two-pointer cell with pointers to old objects),
3 new cells are shorter lived than older cells, and old objects are

unlikely to die anytime soon.



Generational Collection. . .

Generational Collection therefore
1 divides the heap into generations, G0 is the youngest, Gn the

oldest.
2 allocates new objects in G0.
3 GC’s only newer generations.

We have to keep track of back pointers (from old generations
to new).



Functional Language:

(cons ’a ’(b c))

m
t1: x ← new ’(b c);

t2: y ← new ’a;

t3: return new cons(x, y)

A new object (created at time t3) points to older objects.

Object Oriented Language:

t1: T ← new Table(0);

t2: x ← new Integer(5);

t3: T.insert(x);

A new object (created at time t2) is inserted into an older
object, which then points to the news object.



Generational Collection. . .

Remembered Set: Roots:

G0G1G2



Generational Collection – After GC(G0)

Remembered Set: Roots:

G1G2 G ′
0



Generational Collection. . .

Since old objects (in Gn · · ·G1) are rarely changed (to point to
new objects) they are unlikely to point into G0.

Apply the GC only to the youngest generation (G0), since it is
most likely to contain a lot of garbage.

Use the stack and globals as roots.

There might be some back pointers, pointing from an older
generation into G0. Maintain a special set of such pointers,
and use them as roots.

Occasionally GC older (G1 · · ·Gk) generations.

Use either mark-and-sweep or copying collection to GC G0.



Homework



Exam Problem

1 Why is generational collection more appropriate for functional
and logic languages (such as LISP and Prolog), than for
object-oriented languages (such as Eiffel and Modula-3)?

2 The heap in the figure on the next slide holds 7 objects. All
objects have one integer field and one or two pointer fields
(black dots). The only roots are the three global variables X,
Y, and Z. Free space is shaded. Show the state of To-Space
after a copying garbage collection has been performed on
From-Space. Note that several answers are possible,
depending on the visit strategy (Depth-First or Breadth-First
Search) you chose.



Exam Problem I. . .

6

X Z

Roots:

Space

From−
5 7 1310 128

Y



Exam Problem. . .

1 Name five garbage collection algorithms!

2 Describe the Deutsch-Schorr-Waite algorithm! When is it
used? Why is it used? How does it work?

3 What are the differences between stop-and-copy,
incremental and concurrent garbage collection? When
would we prefer one over the other?



Summary



Readings and References

Read the Tiger book:

Garbage Collection pp. 257–282

Topics in advanced language implementation, Chapter 4,
Andrew Appel, Garbage Collection. Chapter 5, David L.
Detlefs, Concurrent Garbage Collection for C++. ISBN
0-262-12151-4.

Aho, Hopcroft, Ullman. Data Structures and Algorithms,
Chapter 12, Memory Management.

Nandakumar Sankaran, A Bibliography on Garbage Collection
and Related Topics, ACM SIGPLAN Notices, Volume 29, No.
9, Sep 1994.

J. Cohen. Garbage Collection of Linked Data Structures,
Computing Surveys, Vol. 13, No. 3, pp. 677–678.


