
CSc 453

Compilers and Systems Software

3 : Lexical Analysis I

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2009 Christian Collberg

collberg@gmail.com

Compiler Phases

We are here! AST

asm

Semantic
Analyser

Interm.
Code Gen

IR

Machine
Code Gen

IR AST

Lexer

tokens

source

errors

errors

Parser

errors

Optimize

Compiler Phases – Lexical analysis

The lexer reads the source file and divides the text into lexical
units (tokens), such as:

Reserved words BEGIN, IF,. . .
identifiers x, StringTokenizer,. . .

special characters +, ∗,−, ^,. . .
numbers 30, 3.14,. . .

comments (* text *),
strings "text".

Lexical errors (such as ’illegal character’, ’undelimited
character string’, ’comment without end’) are reported.

Lexical Analysis of English

The sentence

"The boy’s cowbell won’t play."

would be translated to the list of tokens

the, boy+possessive, cowbell, will, not, play

Lexical Analysis of Java

The sentence

"x = 3.14 * (9.0+y);"

would be translated to the list of tokens

<ID,x>, EQ, <FLOAT,3.14>, STAR, LPAREN,

<FLOAT,9.0>, PLUS, <ID,y>, RPAREN, SEMICOLON

Example – Lexical Analysis

Break up the source code (a text file) and into tokens.

Source Code Stream of Tokens

PROCEDURE Foo ();

VAR i : INTEGER;

BEGIN

i := 1;

WHILE i < 20 DO

PRINT i * 2;

i := i * 2 + 1;

ENDDO;

END Foo;

PROCEDURE, <id,Foo>, LPAR, RPAR, SC,

VAR, <id,i>, COLON, <id,INTEGER>,SC,

BEGIN, <id,i>,CEQ,<int,1>,SC,

WHILE, <id,i>, LT, <int,20>,DO,

PRINT, <id,i>, MUL, <int,2>, SC,

<id,i>, CEQ, <id,i>, MUL, <int,2>, PLUS,

<int,1>, SC, ENDDO, SC, END, <id,Foo>,

Problems

Free vs. Fixed Format

Most languages are free format, i.e. it does not matter where
on a line of text a certain token occurs.

FORTRAN (at least early versions) uses a fixed format where
the first 6 characters on the input line is a label, and the last
characters (columns 72-80) a comment.

A "C" in the first column indicates a comment line.

Any character in column 6 indicates a continuation line.

C Compute the determinant:

det = a(1,1) * a(2,2) * a(3,3) + a(1,2) * a(2,3) * a(3,1)

& + a(2,1) * a(3,2) * a(1,3) - a(3,1) * a(2,2) * a(1,3)

& - a(2,1) * a(1,2) * a(3,3) - a(1,1) * a(3,2) * a(2,3)

Free vs. Fixed Format. . .

Python, Occam, and some functional languages use
indentation to indicate nesting:

def quicksort(list, start, end):

if start < end:

split = partition(list, start, end)

quicksort(list, start, split-1)

quicksort(list, split+1, end)

else:

return

Whitespace

In most modern languages whitespace (blanks and tabs) are
significant. FORTRAN and Algol-68 are different: whitespace may
be added anywhere to improve readability. The FORTRAN
statement

DO 5 I = 1.25

is an assignment statement, meaning the same as:

DO5I = 1.25

This statement, on the other hand, is a loop statement:

DO 5 I = 1,25

...

5 CONTINUE

Whitespace. . .

An error in a single FORTRAN statement resulted in the loss of

the first American probe to Venus (the Mariner I).

....

DO 5 K = 1. 3

T(K) = W0

Z = 1.0/(X**2)*B1**2+3.0977E-4*B0**2

D(K) = 3.076E-2*2.0*(1.0/X*B0*B1+3.0977E-4*

*(B0**2-X*B0*B1))/Z

E(K) = H**2*93.2943*W0/SIN(W0)*Z

H = D(K)-E(K)

5 CONTINUE

This is now considered an urban legend.

Buffering

If done incorrectly, lexical analysis can be an expensive phase
of the compiler – It is the only phase which actually considers
each and every character of the program.

It is, for example, crucial not to read one character at a time
from the input file. Rather, a large block of the input text file
must be read and but into a buffer. This buffer is then used
to provide the lexer with character.

Sometimes the lexer may also need to look ahead at characters
to come before deciding on what token appears next in the
text. The buffer is useful in such circumstances also.

Keywords

Most languages have reserved keywords, which means that
these words may not be redefined by the user.

PL/I does not reserve keywords which makes it difficult for
the lexer to distinguish between user-defined identifiers and
keywords:

IF THEN THEN THEN = ELSE; ELSE ELSE = THEN;

Error handling

What do we do when an error is encountered during lexical
analysis?

Panic Skip characters until a well-formed token is
found.

Replace Replace an incorrect character.
Delete Delete an incorrect character.
Insert Insert a missing character.

Transpose Switch two characters.

Communication

The Lexer may communicate with the parser in many different
ways.

Lexical analysis might, for example, run as a special pass
writing the tokens on a temporary file which is read by the
parser.

Or – and this is probably the most common situation – the
parser makes a procedure call to the lexer whenever a token is
needed.

The Lexer and the Parser could also run as two concurrent
processes communicating over a pipe.

Transition Diagrams

Transition Diagrams

E

8

4 5 6

9 IDENT

10 11 INT

0 1

7

2

3

END

ASSIGN

COLON

letter digitor

digitorletter

letter
−E

other

N D

digit

other

digit

:

other

other other

other

=

TYPE TokenType = (Assign, End, ...);

VAR s : (State0, State1, ...);

c : CHAR;

PROCEDURE GetToken () : TokenType;

CASE s OF

State0 : c := NextChar();

CASE c OF

":" : s := State1|

"E" : s := State4|

"0" .. "9" : s := State10|

ELSE : s := State8

END|

State1 : c := NextChar();

IF c="=" THEN s := State2

ELSE s := State3 END|

State2 : RETURN Assign|

State3 : PutChar(c); RETURN Colon|

State4 : c := NextChar();

IF c = "N" THEN s := State5

ELSE s := State8 END|

State5 : c := NextChar();

IF c = "D" THEN s := State6

ELSE s := State8 END|

State6 : c := NextChar();

IF IsLetterOrDigit(c)

THEN s := State8

ELSE s := State7 END;|

State7 : PutChar(c); RETURN End|

State8 : c := NextChar();

IF NOT IsLetterOrDigit(c)

THEN s := State9 END|

State9 : PutChar(c); RETURN Ident|

State10 : c := NextChar();

IF NOT IsDigit(c)

THEN s := State11 END|

State11 : PutChar(c); RETURN Int|

END;

END GetToken;

Regular Grammars and Lexical
Analysis

Regular Grammars

A grammar is regular if all rules are of the form

A → aB

A → a

By convention, the symbols A, B, C , . . . are non-terminals,
a, b, c , . . . are terminals, and α, β, γ, . . . are strings of symbols.

Regular grammars are used to describe the lexical structure of
programs, i.e. what tokens look like.

Regular Grammars. . .

The following grammar describes C identifiers:

id → letter | letter S

S → letter | letter S

S → digit | digit S

digit → 0 | 1 | · · · | 9

letter → A | · · · | Z |

a | · · · | z

Here’s a derivation of the identifier cow5:

id ⇒ letter S ⇒ c S ⇒ c letter S ⇒ c o S ⇒

c o letter S ⇒ c o w S ⇒ c o w digit ⇒ cow5

Regular Grammars. . .

This is a grammar for floating point numbers. As written, it is
not quite regular: We treat digit as a terminal.

float → + float1 | - float1 | float1

float1 → digit float1 | float2

float2 → . float3

float3 → digit float4 | digit

float4 → digit float4 | float5

float5 → E float6

float6 → + float7 | - float7 | float7

float7 → digit float7 | digit

Use the grammar on the previous slide to derive 0.5E+7.

float ⇒ float1 ⇒ digit float1

⇒ 0 float1

⇒ 0 float2

⇒ 0 . float3

⇒ 0 . digit float4

⇒ 0 . 5 float4

⇒ 0 . 5 float5

⇒ 0 . 5 E float6

⇒ 0 . 5 E + float7 ⇒ 0 . 5 E + 7

Regular Expressions

Regular Expressions

Regular expressions (REs) have the same expressive power as
regular grammars. An RE for FP numbers:

(\+ | \−)?digit ∗ \.digit + (E(\+ | \−)?digit+)?

RE Matches

character The character.
e1 | e2 S , if S is matched by e1 or e2.
e1 e2 S1S2, if e1 matches S1 and e2 matches S2.
e+ One or more S if S is matched by e.
e∗ Zero or more S if S is matched by e.
e? Zero or one S if S is matched by e.
(e) S , if S is matched by e.
\e S , if S is matched by e.

Regular Expression Examples

Expression Matches

a ‘a‘.
[a − z] ‘a‘, ‘b‘, . . ., ‘z‘.
[a − zA − Z0 − 9] ‘a‘, ‘b‘, . . ., ‘z‘, ‘A‘, ‘B‘, . . ., ‘Z‘, ‘0‘, ‘1‘, . . ., ‘9‘, .
[a − zA − Z0 − 9]∗ Zero or more letters or digits.
(a | b+)? “, ‘a‘, ‘b‘, ‘bb‘, ‘bbb‘,
(a | b+)?(cd)∗ “, ‘a‘, ‘b‘, ‘bb‘, ‘bbb‘, . . ., ‘acd‘, ‘bcd‘, ‘cdcd‘,

The Chomsky Hierarchy

Type Grammar PSR

0 Unrestricted α → β

1 Context Sensitive α → β,
| α |≤| β |

2 Context Free A → β

3 Regular A → aβ

A → a

Type 0

Type 3

Type 2

Type 1

The Chomsky Hierarchy. . .

Regular languages are less powerful than context free
languages.

Languages are organized in the Chomsky Hierarchy according
to their generative power.

Type 3 languages are more restrictive (can describe simpler
languages than) type 2 languages.

Type 3 languages can be parsed in linear time, type 2
languages in cubic time.

Programming languages are in between type 2 and 3.

Two natural languages (Swiss German and Bambara) are
known not to be context free.

DFA

Finite Automata

Here’s a transition diagram describing Pascal identifiers:

letter

1 2
letter

digit

Circles represent states. They represent how much of the
input string we have processed.

Arrows represent transitions from one state to the next, when
the character labeling the arrow is matched.

State 1 is the start state.

Accepting states are represented by double circles.

Finite Automata. . .

letter

1 2
letter

digit

Parsing a string of characters using this transition diagram
can be indicated by listing the states and transitions used:

→ 1
t
→ 2

m
→ 2

p
→ 2

8
→ 2

This shows that the string of characters "tmp8" form a legal
Pascal identifier.

DFA

A Deterministic Finite Automaton M consists of

An alphabet Σ,
A set of states S ,
A transition function T : S × Σ → S ,
A start state s0 ∈ S ,
A set of accepting states A ⊂ S .

T records the transitions between states, depending on input:
yx

c
T (x, c) = y

DFA Error States

The transition function T : S × Σ → S is a function. Hence
T (s, c) must be defined for every state s and character c .

But we have ignored any erroneous input. We should have
said

other

1 2

error

letter

digit

letter

other

but this would be tedious. Instead, we normally assume that
these error transitions always exist.

Examples

Strings with exactly one b:

not b

1 2

not b

b

Strings with at most one (i.e. 0 or 1) b:

b
21

not b
not b

Floating Point Literals

Transition diagram for natural numbers:

digit

1 2
digit

Transition diagram for signed natural numbers:

digit

1 20

digit
digit

−

+

Transition diagram for signed real numbers:
digit

0 1 2 3 4

−

+ .digit

digit

digit

digit

Transition diagram for FP numbers:

digit

3 40 1 2

5 6 7

. digit

−

+ digit

digit

digit digit

−

digit

digit

+
E

E

C Comments

C comments are of the form

/* ... (no */s) ... */

Here’s the corresponding transition diagram:

*

3 40 1

all chars
except *

all chars
except *,/

2 */ * /

Lookahead

The end of an identifier is reached when the next character is
not a letter or digit.

The string "tmp8*hi;" has two identifiers, terminated by "*"

and ";", respectively.

Here’s the corresponding transition diagram:

digit

1 3
letter

2
[other]

return ID

letter

[other] means that we’re expecting some other character
(not letter or digit) as lookahead.

Towards an NFA

Here are transition diagrams for recognizing :=, <=, and =:

return <=

: =
return :=

return =

=<

=

Towards an NFA. . .

But, we’d like just one start state, since, at any time during
parsing, any token could occur:

<

return =

=
return <=

=
return :=

=

:

What if two tokens start with the same character? Note that
this is not a DFA since there are three transitions on the same
character:

<

=
return :=

return =

>

=
return <=

return <>

return <

:

=

<

<

We can break out the offending character:

=

return <=

return <

=
return :=

return =

=

return <>

>

[other]

<

:

Towards an NFA. . .

But, this factoring of states becomes tedious. Instead we can
construct a Nondeterministic Finite Automaton (NFA), by
adding ǫ-transitions:

return =

=<

=

return <=

: =
return :=

ǫ

ǫ

ǫ

ǫ-Transitions

An ǫ-transition occurs without consulting the input and
without consuming any characters:

ǫ

NFA

A Nondeterministic Finite Automaton M consists of

An alphabet Σ,
A set of states S ,
A transition function T : S × (Σ ∪ {ǫ}) → P(S),
A start state s0 ∈ S ,
A set of accepting states A ⊂ S .

P(S) is the power-set of S , the set of all subsets of S .

On any transition, we can go to a set of states:

c y

x
z

c
T (x, c) = {y , z}

NFA Example

Consider the following NFA transition diagram:

b

4

2

1 3

a

a

ǫ

ǫ

ǫ

abb is accepted by these moves: → 1
a
→ 2

b
→ 4

ǫ

→ 2
b
→ 4

or by these moves: → 1
a
→ 3

ǫ

→ 4
ǫ

→ 2
b
→ 4

ǫ

→ 2
b
→ 4

The NFA accepts ab+|ab*|b*, or, simpler, (a|ǫ)b*.

Summary

Readings and References

Read Louden, pp. 31–80.

Or, read the Dragon book, pp. 83–140.

The Python example is taken from
http://www.hetland.org/python/quicksort.html:

The FORTRAN example is taken from
http://www.math.hawaii.edu/206L/197/fortran/fort4.htm.

The Mariner 1 example is taken from
http://wwwzenger.informatik.tu-muenchen.de/persons/huckle/bugse.html.

http://www.hetland.org/python/quicksort.html
http://www.math.hawaii.edu/206L/197/fortran/fort4.htm
http://wwwzenger.informatik.tu-muenchen.de/persons/huckle/bugse.html

