CSc 466/566 Computer Security 11: Midterm Review Version: 2012/03/27 13:31:35 Department of Computer Science University of Arizona Copyright © 2012 Christian Collberg

 ${\sf Christian} \ {\sf Collberg}$

Outline

- Modular Arithmetic
- 2 Public-Key Cryptography
- Modelling
- 4 Symmetric Key Ciphers
- Digital Signatures
- 6 Operating System Security

1/34 Modular Arithmetic 2/34

Modular multiplication

Modular addition

• Create the modular multiplication table for Z_7 , $xy \mod 7$.

• Create the modular addition table for Z_7 , $x + y \mod 7$.

Modular Arithmetic 3/34 Modular Arithmetic 4/34

Extended Euclidean Algorithm

Extended Euclidean Algorithm

• Use the Extended Euclidean Algorithm to compute *i* and *j* such that

$$GCD(65, 40) = 65 \cdot i + 40 \cdot j$$

• Source: http://www.mast.queensu.ca/~math418/m418oh/m418oh04.pdf

• Use the Extended Euclidean Algorithm to compute *i* and *j* such that

$$GCD(1239,735) = 1239 \cdot i + 735 \cdot j$$

• Source: http://www.mast.queensu.ca/~math418/m418oh/m418oh04.pdf

Modular Arithmetic 5/34

Modular Exponentiation

- Create the modular exponentiation table for Z_7 , $x^y \mod 7$.
- Highlight modular inverses

Totient

Modular Arithmetic

- **①** Define $\phi(n)$.
- **2** What's $\phi(43)$?
- **3** What's $\phi(42)$?
- 4 List the elements of Z_{42}^*

6/34

Corollary to Euler's Theorem

Modular Multiplicative Inverses

- What are the prime factors of 77?
- **2** What's $\phi(77)$?
- \bullet Use Euler's theorem to compute $20^{62} \mod 77$.

• Computer the modular multiplicative inverse of 7 mod 11, i.e. find x such that $7 \cdot x \mod 11 = 1$.

Modular Arithmetic

9/34

Modular Arithmetic

10/34

Discrete logs

- Is 3 a primitive root of 11?
- ② Is 2 a primitive root of 11?

Outline

- Modular Arithmetic
- Public-Key Cryptography
- Modelling
- 4 Symmetric Key Ciphers
- Digital Signatures
- 6 Operating System Security

RSA Encryption

RSA Key generation

• Show the result of encrypting M=4 using the public key (e,n)=(7,209) in the RSA cryptosystem. Be efficient!

- Generate an RSA key-pair using p = 23, q = 13, e = 7.
- **②** Hint: $GCD(7, 264) = 1 = (-113) \times 7 + (3) \times 264$
- **3** Encrypt M = 88.
- 4 Decrypt the result from 2.
- 5 http://banach.millersville.edu/~bob/math478/ExtendedEuclideanAlgorithmApplet.html

Public-Key Cryptography

13/34

Public-Key Cryptography

Homomorphic encryption

Elgamal encryption

Show that, for RSA encryption

$$E_k(M_1) \cdot E_k(M_2) = E_k(M_1 \cdot M_2)$$

i.e., RSA is homomorphic in multiplication.

- Given the prime p=11, the generator g=2 for Z_{11} , and the random number x=9, compute Bob's private and public Elgamal keys.
- 2 Encrypt the message M = 11 using the random number k = 7.
- 3 Decrypt the ciphertext from 2.

14/34

Elgamal encryption...

a^1	a ²	a ³	a ⁴	a^5	a ⁶	a ⁷	a ⁸	a ⁹	a^{10}
1	1	1	1	1	1	1	1	1	1
2	4	8	5	10	9	7	3	6	1
3	9	5	4	1	3	9	5	4	1
4	5	9	3	1	4	5	9	3	1
5	3	4	9	1	5	3	4	9	1
6	3	7	9	10	5	8	4	2	1
7	5	2	3	10	4	6	9	8	1
8	9	6	4	10	3	2	5	7	1
9	4	3	5	1	9	4	3	5	1
10	1	10	1	10	1	10	1	10	1

Diffie-Hellman Key Exchange

- Let p = 11.
- Let g = 2.
- Let Alice's secret x = 7.
- Let Bob's secret y = 9.
- **①** Compute K_1 .
- ② Compute K_2 .

Public-Key Cryptography 17/34 Public-Key Cryptography 18/34

Outline

- Modular Arithmetic
- Public-Key Cryptography
- Modelling
- 4 Symmetric Key Ciphers
- Digital Signatures
- 6 Operating System Security

Attack tree

- Construct an attack tree for how to get a free lunch at a restaurant!
- Source: http://www.win.tue.nl/~sjouke/publications/papers/attacktrees.pdf.

Outline

- 1 Modular Arithmetic
- 2 Public-Key Cryptography
- Modelling
- 4 Symmetric Key Ciphers
- Digital Signatures
- 6 Operating System Security

Symmetric Ciphers: Confusion and Diffusion

 DES is a combination of two basic principles, confusion and diffusion. How do each transform the plaintext into ciphertext?

Symmetric Key Ciphers 21/34 Symmetric Key Ciphers 22/34

Outline

- Modular Arithmetic
- Public-Key Cryptography
- Modelling
- 4 Symmetric Key Ciphers
- Digital Signatures
- 6 Operating System Security

Digital Signatures: Definitions

- Define the following terms:
 - Nonforgeability
 - Nonmutability
 - Nonrepudiation

RSA signature: Nonmutability

Cryptographic Hash Function Collision Resistance

- Show how the RSA signature scheme does not achieve nonmutability.
- Is this usually a problem? Why?

• What is the difference between weak and strong collision resistance?

Digital Signatures

25/34

Digital Signatures

26/34

Merkle-Damgård Construction

Security of Cryptographic Hash Functions

• Show how, given a compression function *C*, a long message *M* can be hashed using the Merkle-Damgård Construction.

- Assume our hash function *H* has *b*-bit output.
- The number of possible hash values is 2^b .
- Attack:
 - **①** Eve generates large number of messages m_1, m_2, \ldots
 - ② She computes their hash values $H(m_1), H(m_2), \ldots$
 - 3 She waits for two messages m_i and m_j such that $H(m_i) = H(m_j)$.
- Eve needs to generate $\approx 2^b$ inputs to find a collision, right or wrong? Why?

Digital Signatures 27/34 Digital Signatures 28/34

Outline

- Modular Arithmetic
- Public-Key Cryptography
- Modelling
- 4 Symmetric Key Ciphers
- Digital Signatures
- 6 Operating System Security

Secure boot vs. Authenticated boot

• What is the difference between Secure boot and Authenticated boot?

Operating System Security 29/34 Operating System Security 30/34

TPM

- What are the basic things you need to trust in a TPM-based system?
- What are the three main life-time events of a TPM chip?

TPM Challenge

• Describe the events that occur during a TPM challenge!

TPM Sealing

SetUID Vulnerability

• Describe how the TPM can be used for Digital Rights Management of digital media and software!

• Show how a malicious user can abuse a setUID program to gain root access!

Operating System Security 33/34 Operating System Security 34/34